One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function

被引:189
作者
Wang, Haipeng [1 ]
He, Meijin [2 ]
Liu, Huan [2 ]
Guan, Yingchun [1 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Chem, Minist Educ, Key Lab Bioinspired Smart Interfacial Sci & Techn, Beijing 100191, Peoples R China
[3] Beihang Univ, Natl Engn Lab Addit Mfg Large Metall Components, Beijing 100191, Peoples R China
[4] Beihang Univ, Hefei Innovat Res Inst, Hefei 230013, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
superhydrophobic; stainless steel; hierarchical structures; mechanical stability; anti-icing performance; CORROSION-RESISTANCE; REDUCTION BEHAVIOR; CARBON-DIOXIDE; LASER; ADHESION; WATER; MICRO; FILMS; GRAPHENE; LEAF;
D O I
10.1021/acsami.9b06865
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Superhydrophobic metallic materials have drawn broad research interest because of promising applications in various fields. The mechanical stability of superhydrophobic surfaces is currently a major concern limiting their practical applications. Herein, we developed a simple method to fabricate robust superhydrophobic surfaces on stainless steel via direct ultrafast laser microprocessing. Of note is that the fabricated super-hydrophobic surfaces can withstand mechanical abrasion against an 800 grit SiC sandpaper for 2.3 m at an applied pressure of 5.5 kPa without losing superhydrophobicity. It is proposed that the robust superhydrophobicity may be attributable to the formation of unique hierarchical micro-/nanostructures and a nonpolar carbon layer on the surface. The hierarchical structures are composed of laser-created micropillars and ablation-induced nanoparticles. The fabricated surfaces exhibit good thermal stability and still show superhydrophobicity after thermal treatment at 100 degrees C for 120 min, which is related to the inorganic nature of metallic materials. An excellent anti-icing property is achieved on the fabricated surfaces with the water droplets on it retaining the liquid state for over 500 min at -8.5 +/- 0.5 degrees C, which benefits from the obtained superhydrophobicity, based on classic nucleation theory and the heat transfer between the rough solid surface and water droplet. We envision that the presented method provides a facile and effective route to fabricate large-area superhydrophobic surfaces with robust mechanical stability and excellent anti-icing property.
引用
收藏
页码:25586 / 25594
页数:9
相关论文
共 53 条
[1]   Predictive Model for Ice Formation on Superhydrophobic Surfaces [J].
Bahadur, Vaibhav ;
Mishchenko, Lidiya ;
Hatton, Benjamin ;
Taylor, J. Ashley ;
Aizenberg, Joanna ;
Krupenkin, Tom .
LANGMUIR, 2011, 27 (23) :14143-14150
[2]   Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity [J].
Bayer, Ilker S. ;
Brown, Andrea ;
Steele, Adam ;
Loth, Eric .
APPLIED PHYSICS EXPRESS, 2009, 2 (12)
[3]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[4]   Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion [J].
Bhushan, Bharat ;
Jung, Yong Chae ;
Koch, Kerstin .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1894) :1631-1672
[5]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[6]   Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study [J].
Chen, Hongsheng ;
Zheng, Zhong ;
Chen, Zhiwei ;
Bi, Xiaotao T. .
POWDER TECHNOLOGY, 2017, 316 :410-420
[7]   A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications [J].
Das, Sonalee ;
Kumar, Sudheer ;
Samal, Sushanta K. ;
Mohanty, Smita ;
Nayak, Sanjay K. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (08) :2727-2745
[8]   Deep reduction behavior of iron oxide and its effect on direct CO oxidation [J].
Dong, Changqing ;
Liu, Xinglei ;
Qin, Wu ;
Lu, Qiang ;
Wang, Xiaoqiang ;
Shi, Simo ;
Yang, Yongping .
APPLIED SURFACE SCIENCE, 2012, 258 (07) :2562-2569
[9]   Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching [J].
Dong, Changsheng ;
Gu, Yu ;
Zhong, Minlin ;
Li, Lin ;
Sezer, Kursad ;
Ma, Mingxing ;
Liu, Wenjin .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2011, 211 (07) :1234-1240
[10]   Anti-icing Coating with an Aqueous Lubricating Layer [J].
Dou, Renmei ;
Chen, Jing ;
Zhang, Yifan ;
Wang, Xupeng ;
Cui, Dapeng ;
Song, Yanlin ;
Jiang, Lei ;
Wang, Jianjun .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :6998-7003