Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites

被引:152
|
作者
Cai, Yibing [1 ]
Wei, Qufu [1 ]
Huang, Fenglin [1 ]
Lin, Shiliang [1 ]
Chen, Fang [1 ]
Gao, Weidong [1 ]
机构
[1] Jiangnan Univ, Key Lab Ecotext, Sch Text & Clothing, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Phase change materials (PCM); Expanded graphite (EG); Ammonium polyphosphate (APP); Thermal stability; Latent heat; Flame retardant; PARAFFIN/EXPANDED GRAPHITE COMPOSITE; CONDUCTIVITY; PERFORMANCE; POLYPROPYLENE; FLAMMABILITY; POLYMER; PCM;
D O I
10.1016/j.renene.2009.01.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present work, the thermal energy storage phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The morphology and properties of the PCM composites based on the flame retardant system with expanded graphite (EG) and ammonium polyphosphate (APP) were characterized by Scanning electron microscope (SEM), Differential scanning calorimeter (DSC), Thermogravimetric analyses (TGA) and Cone calorimeter tests. It was observed from SEM images that paraffin dispersed well in the three-dimensional net structure formed by the HDPE. The SEM images also indicated that the EG and APP were well dispersed in the PCM composites. The DSC measurements indicated that the additives of flame retardant had little effect on the temperatures of phase change peaks and thermal energy storage property. The TGA results showed that the loadings of the EG and APP increased the temperature of the maximum weight loss and the charred residue of the PCM composites at 650 degrees C, contributing to the improved thermal stability properties. It was revealed from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. To further investigate the synergistic effect between the EG and APP, it was observed from SEM images that the homogeneous and compact charred residue structure after combustion contributed to the enhanced thermal stability, improved flammability and increased self-extinguishing properties of the PCM composites. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2117 / 2123
页数:7
相关论文
共 50 条
  • [41] Thermal properties investigation of paraffin wax/titania nanocomposites as phase change materials
    Mansour, Shehab A.
    Atwa, Ahmed A.
    Farag, Elsayed M.
    Elsad, Ragab A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (19) : 9909 - 9917
  • [42] Development, Thermal Properties, and Reliability Testing of Eutectic Polyethylene Glycol as Phase Change Materials for Thermal Energy Storage Applications
    Singh, Pooja
    Ansu, A. K.
    Sharma, R. K.
    Kumari, Poonam
    Kumar, Amit
    Kumar, Rakesh
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2023, 44 (03)
  • [43] A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications
    Kahwaji, Samer
    Johnson, Michel B.
    Kheirabadi, Ali C.
    Groulx, Dominic
    White, Mary Anne
    ENERGY, 2018, 162 : 1169 - 1182
  • [44] Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials
    Huang, Xiang
    Alva, Guruprasad
    Liu, Lingkun
    Fang, Guiyin
    APPLIED ENERGY, 2017, 200 : 19 - 27
  • [45] Okra functional biomimetic composite phase change materials integrated with high thermal conductivity, remarkable latent heat, and multicycle stability for high temperature thermal energy storage
    Ren, Tianze
    Yao, Haichen
    ENERGY, 2024, 308
  • [46] Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application
    Huang, J.
    Wang, T. Y.
    Wang, C. H.
    Rao, Z. H.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 (06) : 422 - 427
  • [47] Flammability and thermal properties of high density polyethylene/paraffin hybrid as a form-stable phase change material
    Cai, YB
    Hu, Y
    Song, L
    Tang, Y
    Yang, R
    Zhang, YP
    Chen, ZY
    Fan, WC
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 99 (04) : 1320 - 1327
  • [48] Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives
    Wang, Chaoming
    Chen, Ke
    Huang, Jun
    Cai, Zhengyu
    Hu, Zhanjiang
    Wang, Tingjun
    ENERGY, 2019, 180 : 873 - 880
  • [49] Investigating thermal properties of Nanoparticle Dispersed Paraffin (NDP) as phase change material for thermal energy storage
    Kumar, P. Manoj
    Mylsamy, K.
    Prakash, K. B.
    Nithish, M.
    Anandkumar, R.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 745 - 750
  • [50] High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites
    Liu, Xianglei
    Wang, Haolei
    Xu, Qiao
    Luo, Qingyang
    Song, Yanan
    Tian, Yang
    Chen, Meng
    Xuan, Yimin
    Jin, Yi
    Jia, Yixuan
    Li, Yongliang
    Ding, Yulong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 175