Multi-Wavelet Residual Dense Convolutional Neural Network for Image Denoising

被引:6
|
作者
Wang, Shuo-Fei [1 ,2 ]
Yu, Wen-Kai [1 ,2 ]
Li, Ya-Xin [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Phys, Ctr Quantum Technol Res, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Minist Educ, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Discrete wavelet transforms; Noise reduction; Image denoising; Task analysis; Convolutional neural networks; PSNR; receptive field; residual dense block; convolutional neural network; TRANSFORM; SPARSE; CNN;
D O I
10.1109/ACCESS.2020.3040542
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The neural networks with large receptive field show excellent fitting ability and have been successfully applied in image denoising, but with a difficulty to reduce the computational overhead while acquiring good denoising performance. Here we choose a representative of the above networks named multi-wavelet convolutional neural network (MWCNN) as the backbone. To obtain a better tradeoff between the denoising performance and computation speed, we propose to adopt residual dense blocks (RDBs) in each layer of the MWCNN. We call this scheme multi-wavelet residual dense convolutional neural network (MWRDCNN). Benefitting from the applied short-term residual learning strategy, it can increase the learning efficiency. Besides, since we use a hierarchical structure to build our network, the adopted RDBs in different layers are helpful for extracting more object details in different scales. Both horizontal and vertical comparison experiments have been performed to demonstrate the effectiveness of this network in image denoising. The results also show that our MWRDCNN takes much shorter time than other RDB-based networks to extract more features from adjacent layers and is good at handling the images which are badly corrupted by the noise. Thereby, it is a successful attempt to make full use of the advantages of multiple networks without any conflicts.
引用
收藏
页码:214413 / 214424
页数:12
相关论文
共 50 条
  • [41] Residual dense network with non-residual guidance for blind image denoising
    Liao, Jan-Ray
    Lin, Kun-Feng
    Chang, Yen-Cheng
    DIGITAL SIGNAL PROCESSING, 2023, 137
  • [42] Wavelet analysis model inspired convolutional neural networks for image denoising
    Xu, Ruotao
    Xu, Yong
    Yang, Xuhui
    Huang, Haoran
    Lei, Zhenghua
    Quan, Yuhui
    APPLIED MATHEMATICAL MODELLING, 2024, 125 : 798 - 811
  • [43] Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
    Yin-Jin Ma
    Yong Ren
    Peng Feng
    Peng He
    Xiao-Dong Guo
    Biao Wei
    Nuclear Science and Techniques, 2021, 32
  • [44] Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
    Yin-Jin Ma
    Yong Ren
    Peng Feng
    Peng He
    Xiao-Dong Guo
    Biao Wei
    Nuclear Science and Techniques, 2021, 32 (04) : 72 - 85
  • [45] Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography
    Ma, Yin-Jin
    Ren, Yong
    Feng, Peng
    He, Peng
    Guo, Xiao-Dong
    Wei, Biao
    NUCLEAR SCIENCE AND TECHNIQUES, 2021, 32 (04)
  • [46] New image denoising algorithm using monogenic wavelet transform and improved deep convolutional neural network
    Bao, Zhongyun
    Zhang, Guolin
    Xiong, Bangshu
    Gai, Shan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (11-12) : 7401 - 7412
  • [47] New image denoising algorithm using monogenic wavelet transform and improved deep convolutional neural network
    Zhongyun Bao
    Guolin Zhang
    Bangshu Xiong
    Shan Gai
    Multimedia Tools and Applications, 2020, 79 : 7401 - 7412
  • [48] Dense Residual Transformer for Image Denoising
    Yao, Chao
    Jin, Shuo
    Liu, Meiqin
    Ban, Xiaojuan
    ELECTRONICS, 2022, 11 (03)
  • [49] Image Denoising using Attention-Residual Convolutional Neural Networks
    Pires, Rafael G.
    Santos, Daniel F. S.
    Santos, Claudio F. G.
    Santana, Marcos C. S.
    Papa, Joao P.
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 101 - 107
  • [50] Image retrieval based on multi-wavelet transform
    Xi, Wu
    Tong, Zhu
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 2, PROCEEDINGS, 2008, : 510 - +