Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes

被引:41
|
作者
Hong, Young Joon [1 ,2 ]
Yoo, Jinkyoung [1 ,2 ]
Doh, Yong-Joo [1 ,2 ]
Kang, Suk Hoon [3 ]
Kong, Ki-jeong [4 ]
Kim, Miyoung [3 ]
Lee, Dong Ryeol [5 ]
Oh, Kyu Hwan [3 ]
Yi, Gyu-Chul [1 ,2 ]
机构
[1] POSTECH, Ctr Semicond Nanorods, Natl Creat Res Initiat, Pohang 790784, Gyeongbuk, South Korea
[2] POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyeongbuk, South Korea
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[4] Korea Res Inst Chem Technol, Taejon 305600, South Korea
[5] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
关键词
VAPOR-PHASE EPITAXY; SEMICONDUCTOR NANOWIRES; NANORODS; FABRICATION; NANOTUBES; FILMS;
D O I
10.1039/b816034a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combined experimental and theoretical investigation has clarified the nanometre-scale vapour-phase epitaxial growth of ZnO nanostructures on different crystal planes of GaN substrates. Under typical growth conditions, ZnO nanorods grow perpendicular to the GaN(0001) plane, but thin flat films form on GaN(10 (1) over bar1), (10 (1) over bar0) and (1 (1) over bar 20). High-resolution X-ray diffraction data and transmission electron microscopy confirm the heteroepitaxial relationship between the ZnO nanostructures and GaN substrates. These results are consistent with first-principles theoretical calculations, indicating that the ZnO surface morphologies are mainly influenced by highly anisotropic GaN/ZnO interface energies. As a result of the large surface energy gradients, different ZnO nanostructures grow by preferential heteroepitaxial growth on different facets of regular GaN micropattern arrays. High-resolution transmission electron microscopy shows that ZnO nanotubes develop epitaxially on micropyramid tips, presumably as a result of enhanced nucleation and growth about the edges.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 50 条
  • [31] Growth of ZnO nanostructures produced by MOCVD:: A study of the effect of the substrate
    Scalisi, Alfio A.
    Toro, Roberta G.
    Malandrino, Graziella
    Fragala, Maria E.
    Pezzotti, Giuseppe
    CHEMICAL VAPOR DEPOSITION, 2008, 14 (5-6) : 115 - 122
  • [32] Effect of substrate temperature on the growth and luminescence properties of ZnO nanostructures
    Khan, A
    Kordesch, ME
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 30 (1-2): : 51 - 54
  • [33] Origin of Different Growth Modes for Epitaxial Manganite Films
    Cai, Rongsheng
    Wang, Yiqian
    Liu, Xuehua
    Gao, Weiwei
    Chen, Yunzhong
    Sun, Jirong
    Wang, Yanguo
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (05) : 1660 - 1665
  • [34] Modeling epitaxial growth of binary alloy nanostructures on a weakly interacting substrate
    Heinrichs, S.
    Dieterich, W.
    Maass, P.
    PHYSICAL REVIEW B, 2007, 75 (08)
  • [35] MOCVD growth of ZnO on different substrate materials
    Gruber, T
    Kirchner, C
    Waag, A
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2002, 229 (02): : 841 - 844
  • [36] Epitaxial Growth of ZnO/InN Core/Shell Nanostructures for Solar Cell Applications
    Park, Jinsub
    Ryu, Horyong
    Son, Taejoon
    Yeon, Seunghwan
    APPLIED PHYSICS EXPRESS, 2012, 5 (10)
  • [37] Bottom-up fabrication of hierarchical ZnO nanostructures by chemical epitaxial growth
    College of Physics Science, Qingdao University, Qingdao 266071, China
    Gongneng Cailiao, 2009, 5 (874-876+880):
  • [38] Epitaxial growth of winding ZnO nanowires on a single-crystalline substrate
    Kawano, Tetsuo
    Uchiyama, Hiroaki
    Kiguchi, Takanori
    Wada, Satoshi
    Imai, Hiroaki
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2009, 117 (1363) : 255 - 257
  • [39] Epitaxial growth of non-polar ZnO films on MgO substrate
    Perriere, J.
    Jedrecy, N.
    Millon, E.
    Cachoncinlle, C.
    Talbi, A.
    Demange, V.
    Guilloux-Viry, M.
    Nistor, M.
    THIN SOLID FILMS, 2018, 652 : 34 - 38
  • [40] Growth of epitaxial ZnO thin film by oxidation of epitaxial ZnS film on Si(111) substrate
    Miyake, Aki
    Kominami, Hiroko
    Tatsuoka, Hirokazu
    Kuwabara, Hiroshi
    Nakanishi, Yoichiro
    Hatanaka, Yoshinori
    Japanese journal of applied physics, 2000, 39 (11 B)