Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes

被引:41
|
作者
Hong, Young Joon [1 ,2 ]
Yoo, Jinkyoung [1 ,2 ]
Doh, Yong-Joo [1 ,2 ]
Kang, Suk Hoon [3 ]
Kong, Ki-jeong [4 ]
Kim, Miyoung [3 ]
Lee, Dong Ryeol [5 ]
Oh, Kyu Hwan [3 ]
Yi, Gyu-Chul [1 ,2 ]
机构
[1] POSTECH, Ctr Semicond Nanorods, Natl Creat Res Initiat, Pohang 790784, Gyeongbuk, South Korea
[2] POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyeongbuk, South Korea
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[4] Korea Res Inst Chem Technol, Taejon 305600, South Korea
[5] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
关键词
VAPOR-PHASE EPITAXY; SEMICONDUCTOR NANOWIRES; NANORODS; FABRICATION; NANOTUBES; FILMS;
D O I
10.1039/b816034a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combined experimental and theoretical investigation has clarified the nanometre-scale vapour-phase epitaxial growth of ZnO nanostructures on different crystal planes of GaN substrates. Under typical growth conditions, ZnO nanorods grow perpendicular to the GaN(0001) plane, but thin flat films form on GaN(10 (1) over bar1), (10 (1) over bar0) and (1 (1) over bar 20). High-resolution X-ray diffraction data and transmission electron microscopy confirm the heteroepitaxial relationship between the ZnO nanostructures and GaN substrates. These results are consistent with first-principles theoretical calculations, indicating that the ZnO surface morphologies are mainly influenced by highly anisotropic GaN/ZnO interface energies. As a result of the large surface energy gradients, different ZnO nanostructures grow by preferential heteroepitaxial growth on different facets of regular GaN micropattern arrays. High-resolution transmission electron microscopy shows that ZnO nanotubes develop epitaxially on micropyramid tips, presumably as a result of enhanced nucleation and growth about the edges.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 50 条
  • [1] Surface preparation of ZnO single-crystal substrate for the epitaxial growth of ZnO thin films
    Nakamura, T.
    Masuko, K.
    Ashida, A.
    Yoshimura, T.
    Fujimura, N.
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 516 - 518
  • [2] ZnO nanostructures with controlled morphologies on a glass substrate
    Kim, Yong-Jin
    Jeon, Jong-Myeong
    Choi, Jun Hee
    Park, Sung Soo
    Kim, Sun Il
    Baik, Chan Wook
    Kim, Miyoung
    Kim, Jong Min
    Yi, Gyu-Chul
    NANOTECHNOLOGY, 2010, 21 (26)
  • [3] Epitaxial growth of ZnO nanorods on Si substrate
    School of Science, Southwest Petroleum University, Chengdu 610500, China
    不详
    Rengong Jingti Xuebao, 2007, 3 (540-544):
  • [4] Substrate preparations in epitaxial ZnO film growth
    Zhu, S
    Su, CH
    Lehoczky, SL
    Harris, MT
    Callahan, MJ
    McCarty, P
    George, MA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 190 - 196
  • [5] A Controlled Growth of ZnO Nanostructures on ZnS
    Ahn S.I.
    Transactions on Electrical and Electronic Materials, 2018, 19 (3) : 207 - 211
  • [6] Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate
    Mei, ZX
    Du, XL
    Wang, Y
    Ying, MJ
    Zeng, ZQ
    Zheng, H
    Jia, JF
    Xue, QK
    Zhang, Z
    APPLIED PHYSICS LETTERS, 2005, 86 (11) : 1 - 3
  • [7] Growth of ZnO nanostructures with different morphologies by using hydrothermal technique
    Tong, Yanhong
    Liu, Yichun
    Dong, Lin
    Zhao, Dongxu
    Zhang, Jiying
    Lu, Youming
    Shen, Dezhen
    Fan, Xiwu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (41): : 20263 - 20267
  • [8] Growth modes of ZnO nanostructures from laser ablation
    Amarilio-Burshtein, I.
    Tamir, S.
    Lifshitz, Y.
    APPLIED PHYSICS LETTERS, 2010, 96 (10)
  • [9] Effect of thermal treatment on ZnO substrate for epitaxial growth
    Gu, X
    Sabuktagin, S
    Teke, A
    Johnstone, D
    Morkoç, H
    Nemeth, B
    Nause, J
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2004, 15 (06) : 373 - 378
  • [10] EPITAXIAL-GROWTH OF ZNO ON A ZN (0001) SUBSTRATE
    UNERTL, WN
    BLAKELY, JM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (03): : 407 - 407