Brain and Pituitary Response to Vaccination in Gilthead Seabream (Sparus aurata L.)

被引:17
作者
Liu, X. H. [1 ,2 ]
Khansari, A. R. [1 ]
Teles, M. [1 ]
Martinez-Rodriguez, G. [3 ]
Zhang, Y. G. [2 ]
Mancera, J. M. [4 ]
Reyes-Lopez, F. E. [1 ]
Tort, L. [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Cell Biol Physiol & Immunol, Barcelona, Spain
[2] Southwest Univ, Key Lab Freshwater Fish Reprod & Dev, Minist Educ, Key Lab Aquat Sci Chongqing,Sch Life Sci, Chongqing, Peoples R China
[3] Inst Ciencias Marinas Andalucia, Cadiz, Spain
[4] Univ Cadiz, Inst Univ Invest Marina INMAR, Dept Biol, Fac Marine & Environm Sci, Campus Excelencia Int Mar CEI MAR, Cadiz, Spain
关键词
brain; pituitary; vaccination; immune response; stress response; HEAT-SHOCK PROTEINS; STRESS-RESPONSE; VIBRIO-ANGUILLARUM; IMMUNE-RESPONSE; RAINBOW-TROUT; AIR EXPOSURE; FISH; SYSTEM; EXPRESSION; DISEASE;
D O I
10.3389/fphys.2019.00717
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Vaccination is a widely used therapeutical strategy in aquaculture, but whether vaccination elicits stress responses in the central neuroendocrine system and enhances the crosstalk between the immune and endocrine systems in the brain or pituitary after vaccination is unclear. To answer this question two experiments using two different vaccine exposure routes, i.e., bath or intraperitoneal (i.p.) injection, were carried out on gilthead seabream (Sparus aurata L.). In the first one, the stress responses of fish subjected to waterborne Vibrio anguillarum bacterin were compared with responses after air exposure or their combination. In the second experiment, fish were subjected to an intraperitoneal injection of Lactococcus garvieae bacterin and we assessed the central stress response and also whether or not a significant immune response was induced in brain and pituitary. In both experiments, blood, brain and pituitary tissues were collected at 1, 6, and 24 h post stress for plasma hormone determination and gene expression analysis, respectively. Results indicated that bath vaccination induced a decreased central stress response compared to air exposure which stimulated both brain and pituitary stress genes. In the second experiment, injection vaccination kept unchanged plasma stress hormones except cortisol that raised at 6 and 24 h. In agreement, non-significant or slight changes on the transcription of stress-related genes were recorded, including the hormone genes of the hypothalamic pituitary interrenal (HPI) axis and other stress markers such as hsp70, hsp90, and mt genes in either brain or pituitary. Significant changes were observed, however, in crhbp and gr. In this second experiment the immune genes il1 beta, cox2, and lys, showed a strong expression in both brain and pituitary after vaccination, notably il1 beta which showed more than 10 fold raise. Overall, vaccination procedures, although showing a cortisol response, did not induce other major stress response in brain or pituitary, regardless the administration route. Other than main changes, the alteration of crhbp and gr suggests that these genes could play a relevant role in the feedback regulation of HPI axis after vaccination. In addition, from the results obtained in this work, it is also demonstrated that the immune system maintains a high activity in both brain and pituitary after vaccine injection.
引用
收藏
页数:13
相关论文
共 61 条
[1]   The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement [J].
Arends, RJ ;
Mancera, JM ;
Muñoz, JL ;
Bonga, SEW ;
Flik, G .
JOURNAL OF ENDOCRINOLOGY, 1999, 163 (01) :149-157
[2]   Passage of cytokines across the blood-brain barrier [J].
Banks, WA ;
Kastin, AJ ;
Broadwell, RD .
NEUROIMMUNOMODULATION, 1995, 2 (04) :241-248
[3]  
Behan DP, 1997, J NEUROCHEM, V68, P2053
[4]   THE ISOLATION OF A RICKETTSIA-LIKE ORGANISM CAUSING DISEASE AND MORTALITY IN CHILEAN SALMONIDS AND ITS CONFIRMATION BY KOCH POSTULATE [J].
CVITANICH, JD ;
GARATE, ON ;
SMITH, CE .
JOURNAL OF FISH DISEASES, 1991, 14 (02) :121-145
[5]   Evolution of the corticotropin-releasing hormone signaling system and its role in stress-induced phenotypic plasticity [J].
Denver, RJ .
NEUROPEPTIDES: STRUCTURE AND FUNCTION IN BIOLOGY AND BEHAVIOR, 1999, 897 :46-53
[6]   Influence of the sequence of administration of β-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.) [J].
Figueras, A ;
Santarém, MM ;
Novoa, B .
VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 1998, 64 (01) :59-68
[7]   CRF and stress in fish [J].
Flik, G ;
Klaren, PHM ;
Van den Burg, EH ;
Metz, JR ;
Huising, MO .
GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2006, 146 (01) :36-44
[8]   Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention [J].
Frans, I. ;
Michiels, C. W. ;
Bossier, P. ;
Willems, K. A. ;
Lievens, B. ;
Rediers, H. .
JOURNAL OF FISH DISEASES, 2011, 34 (09) :643-661
[9]   The effect of vaccination and sea water entry on immunocompetence and susceptibility to Kudoa thyrsites in Atlantic salmon (Salmo salar L.) [J].
Funk, VA ;
Jones, SRM ;
Kim, E ;
Kreiberg, H ;
Taylor, K ;
Wu, S ;
Young, C .
FISH & SHELLFISH IMMUNOLOGY, 2004, 17 (04) :375-387
[10]   Pituitary dendritic cells communicate immune pathogenic signals [J].
Glennon, Erin ;
Kaunzner, Ulrike W. ;
Gagnidze, Khatuna ;
McEwen, Bruce S. ;
Bulloch, Karen .
BRAIN BEHAVIOR AND IMMUNITY, 2015, 50 :232-240