Ferulic acid protects renal tubular epithelial cells against anoxia/reoxygenadon injury mediated by AMPKα1

被引:1
|
作者
Chen, Tianpeng [1 ]
Niu, Li [2 ]
Wang, Liang [3 ]
Zhou, Qing [2 ]
Zhao, Xiaoyu [2 ]
Lai, Songqing [1 ]
He, Xinlan [2 ]
He, Huan [2 ]
He, Ming [1 ]
机构
[1] Nanchang Univ, Jiangxi Acad Clin Med Sci, Inst Cardiovasc Dis, Affiliated Hosp 1, Nanchang 330006, Jiangxi, Peoples R China
[2] Nanchang Univ, Jiangxi Prov Key Lab Basic Pharmacol, Sch Pharmaceut Sci, Nanchang 330006, Jiangxi, Peoples R China
[3] Nanchang Univ, Dept Rehabil, Affiliated Hosp 1, Nanchang, Jiangxi, Peoples R China
关键词
Ferulic acid; anoxia/reoxygenation injury; NRK-52E cell; AMPK alpha 1; apoptosis; ISCHEMIA-REPERFUSION INJURY; ENERGY SENSOR; ISCHEMIA/REPERFUSION INJURY; KINASE; AMPK; ACTIVATION; KIDNEY; CARDIOMYOCYTES; APOPTOSIS; AUTOPHAGY;
D O I
10.1080/10715762.2022.2062339
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anoxia/reoxygenation (A/R) injury causes dysfunction of rat renal tubular epithelial cells (NRK-52E), which is associated with excess reactive oxygen species (ROS) generation and eventually leads to apoptosis. Ferulic acid (FA), a phenolic acid, which is abundant in fruits and vegetables. FA possesses the properties of scavenging free radicals and cytoprotection against oxygen stress. In the study, the protective effects of FA against NRK-52E cells damage induced by A/R were explored and confirmed the role of AMP-activated protein kinase alpha 1 (AMPK alpha 1). We found that after NRK-52E cells suffered A/R damage, FA pretreatment increased the cell viability and decreased LDH activity in culture medium in a concentration-dependent manner, the activities of endogenous antioxidant enzymes such as glutathione peroxidase, superoxide dismutase and catalase improved, intracellular ROS generation and malondialdehyde contents mitigated. In addition, pretreatment of 75 mu M FA ameliorated mitochondrial dysfunction by A/R-injury and ultimately decreased apoptosis (25.3 +/- 0.61 vs 12.1 +/- 0.60), which was evidenced by preventing the release of cytochrome c from mitochondria to the cytoplasm. 75 mu M FA pretreatment also significantly upregulated AMPK alpha 1 expression (3.16 +/- 0.18 folds) and phosphorylation (2.56 +/- 0.13 folds). However, compound C, a specific AMPK inhibitor, significantly attenuated FA pretreatment's effects, as mentionedabove. These results firstly clarified that FA pretreatment attenuated NRK-52E cell damage induced by A/R via upregulating AMPK alpha 1 expression and phosphorylation.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [1] Salidroside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro
    Sun, Yan
    Xun, Liru
    Jin, Gang
    Shi, Lei
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2018, 137 (02) : 170 - 176
  • [2] Berberine protects renal tubular cells against hypoxia/reoxygenation injury via the Sirt1/p53 pathway
    Lin, Yuanbang
    Sheng, Mingwei
    Ding, Yijie
    Zhang, Nan
    Song, Yayue
    Du, Hongyin
    Lu, Ning
    Yu, Wenli
    JOURNAL OF NATURAL MEDICINES, 2018, 72 (03) : 715 - 723
  • [3] Lithium targeting of AMPK protects against cisplatin-induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells
    Bao, Hui
    Zhang, Qianyun
    Liu, Xinying
    Song, Yaxiang
    Li, Xinhua
    Wang, Zhen
    Li, Changbin
    Peng, Ai
    Gong, Rujun
    FASEB JOURNAL, 2019, 33 (12) : 14370 - 14381
  • [4] Inhibition of TRAF1 protects renal tubular epithelial cells against hypoxia/reoxygenation injury
    Yu, Wei
    Mao, Qifeng
    JOURNAL OF MENS HEALTH, 2021, 17 (03) : 167 - 173
  • [5] Erianin protects against high glucose-induced oxidative injury in renal tubular epithelial cells
    Chen, Mei-Fen
    Liou, Shorong-Shii
    Kao, Shung-Te
    Liu, I-Min
    FOOD AND CHEMICAL TOXICOLOGY, 2019, 126 : 97 - 105
  • [6] Ferulic acid ameliorates acetaminophen-induced acute liver injury by promoting AMPK-mediated protective autophagy
    Wu, Jianzhi
    Zhou, Fei
    Fan, Guifang
    Liu, Jia
    Wang, Yao
    Xue, Xiaoyong
    Lyu, Xiangjun
    Lin, Sheng
    Li, Xiaojiaoyang
    IUBMB LIFE, 2022, 74 (09) : 880 - 895
  • [7] HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury
    Fu, Zong-Jie
    Wang, Zhi-Yu
    Xu, Lian
    Chen, Xiao-Hui
    Li, Xiang-Xiao
    Liao, Wei-Tang
    Ma, Hong-Kun
    Jiang, Meng-Di
    Xu, Ting-Ting
    Xu, Jing
    Shen, Yan
    Song, Bei
    Gao, Ping-Jin
    Han, Wei-Qing
    Zhang, Wen
    REDOX BIOLOGY, 2020, 36
  • [8] Macelignan protects against renal ischemia-reperfusion injury via of inhibition inflammation and apoptosis of renal epithelial cells
    Long, Jianhua
    Qian, Kun
    Tan, Shubo
    Liu, Jia
    Li, Jianjun
    CELLULAR AND MOLECULAR BIOLOGY, 2020, 66 (01) : 55 - 59
  • [9] Pioglitazone protects tubular cells against hypoxia/reoxygenation injury through enhancing autophagy via AMPK-mTOR signaling pathway
    Xi, Xiaoqing
    Zou, Cong
    Ye, Zhenfeng
    Huang, Yawei
    Chen, Tongchang
    Hu, Honglin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 863
  • [10] Carbon monoxide (CO) protects renal tubular epithelial cells against cold-rewarm apoptosis
    Stec, David E.
    Bishop, Christopher
    Rimoldi, John M.
    Poreddy, Sambasiva R.
    Vera, Trinity
    Salahudeen, Abdulla K.
    RENAL FAILURE, 2007, 29 (05) : 543 - 548