Photon dose produced by a high-intensity laser on a solid target

被引:19
|
作者
La Fontaine, A. Compant [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
laser-plasma interaction at ultra-high high-intensity; bremsstrahlung emission; photon dose; gamma rays; multi-MeV electron and photon production; particle in cell and Monte Carlo PIC codes; HOT-ELECTRON PRODUCTION; PLASMA INTERACTIONS; NUCLEAR-REACTIONS; FAST-IGNITER; SHORT-PULSE; ACCELERATION; ABSORPTION; ULTRASHORT; PARTICLE; FIELD;
D O I
10.1088/0022-3727/47/32/325201
中图分类号
O59 [应用物理学];
学科分类号
摘要
When a high-intensity laser pulse hits a solid target, its pedestal creates a preplasma. The interaction of the main laser pulse, linearly polarized, with this preplasma produces relativistic electrons. These electrons subsequently penetrate inside the target, with high atomic number, and produce bremsstrahlung emission, which constitutes an x-ray source that may be used in various applications such as radiography of high area density objects, photonuclear studies or positron production. This x-ray source is mainly defined by its photon dose, which depends upon the laser, preplasma and target characteristics. In new facilities the radioprotection layout design can be obtained by numerical simulations, which are somewhat tedious. A simple model giving the photon dose per laser energy unit is obtained by using the mean bremsstrahlung cross section of electrons interacting with the atoms of the conversion target. It is expressed versus the fraction eta(e1) of the laser energy absorbed into the forward hot electrons, their mean kinetic energy E, the photon lobe emission mean angular aperture (theta) over bar and the target characteristics, i. e. thickness, element, atomic mass and atomic number. The parameters eta(e1) , E and (theta) over bar are analysed by applying the energy and momentum flux conservation laws during the laser-plasma interaction in the relativistic regime in an underdense and overdense plasma, including the hole-boring effect. In addition, these quantities are parametrized versus the normalized laser vector potential a(0) and the preplasma scale length L-p by using a full set of numerical simulations, in the laser intensity domain 10(18)-10(21)Wcm(-2) and preplasma scale length range 0.03-400 mu m. These simulations are done in two-and three-dimensional geometry with the CALDER particle-in-cell code, which computes the laser-plasma interaction, and with the MCNP Monte Carlo code, which calculates the bremsstrahlung emission. The present model is compared with the simulations and with experimental results.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
    Bailly-Grandvaux, M.
    Kawahito, D.
    McGuffey, C.
    Strehlow, J.
    Edghill, B.
    Wei, M. S.
    Alexander, N.
    Haid, A.
    Brabetz, C.
    Bagnoud, V
    Hollinger, R.
    Capeluto, M. G.
    Rocca, J. J.
    Beg, F. N.
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [42] On-shot, high-intensity laser aberration measurements via ponderomotive electron ejection
    Raymond, A. E.
    Ravichandran, S.
    Bahk, S. -w.
    Longman, A.
    Roso, L.
    Fedosejevs, R.
    Mileham, C.
    Begishev, I. A.
    Qin, S.
    Dauphin, N.
    Shamlian, J.
    Hill, W. T.
    Rinderknecht, H. G.
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [43] High-intensity lasers as radiation sources
    Galy, J.
    Hamilton, D. J.
    Normand, C.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 175 : 147 - 152
  • [44] Proton-induced Nuclear Reactions Using Compact High-Contrast High-Intensity Laser
    Ogura, Koichi
    Shizuma, Toshiyuki
    Hayakawa, Takehito
    Yogo, Akifumi
    Nishiuchi, Mamiko
    Orimo, Satoshi
    Sagisaka, Akito
    Pirozhkov, Alexander
    Mori, Michiaki
    Kiriyama, Hiromitsu
    Kanazawa, Shuhei
    Kondo, Shunji
    Nakai, Yoshiki
    Shimoura, Takuya
    Tanoue, Manabu
    Akutsu, Atsushi
    Motomura, Tomohiro
    Okada, Hajime
    Kimura, Toyoaki
    Oishi, Yuji
    Nayuki, Takuya
    Fujii, Takashi
    Nemoto, Koshichi
    Daido, Hiroyuki
    APPLIED PHYSICS EXPRESS, 2009, 2 (06)
  • [45] High-intensity laser-plasma interaction with wedge-shaped-cavity targets
    Theobald, W.
    Ovchinnikov, V.
    Ivancic, S.
    Eichman, B.
    Nilson, P. M.
    Delettrez, J. A.
    Yan, R.
    Li, G.
    Marshall, F. J.
    Meyerhofer, D. D.
    Myatt, J. F.
    Ren, C.
    Sangster, T. C.
    Stoeckl, C.
    Zuegel, J. D.
    Van Woerkom, L.
    Freeman, R. R.
    Akli, K. U.
    Giraldez, E.
    Stephens, R. B.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [46] Using high-intensity laser-generated energetic protons to radiograph directly driven implosions
    Zylstra, A. B.
    Li, C. K.
    Rinderknecht, H. G.
    Seguin, F. H.
    Petrasso, R. D.
    Stoeckl, C.
    Meyerhofer, D. D.
    Nilson, P.
    Sangster, T. C.
    Le Pape, S.
    Mackinnon, A.
    Patel, P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01)
  • [47] Polarization-dependent high-intensity Kapitza-Dirac effect in strong laser fields
    Boening, Birger
    Paufler, Willi
    Fritzsche, Stephan
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [48] An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets
    Price, C. J.
    Donnelly, T. D.
    Giltrap, S.
    Stuart, N. H.
    Parker, S.
    Patankar, S.
    Lowe, H. F.
    Drew, D.
    Gumbrell, E. T.
    Smith, R. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (03)
  • [49] Near 10 MeV ion acceleration in the forward direction and isotope production with a high-intensity laser
    Maksimchuk, A
    Nemoto, K
    Banerjee, S
    Flippo, K
    Gu, S
    Bychenkov, VY
    Umstadter, D
    Mourou, G
    ECLIM 2000: 26TH EUROPEAN CONFERENCE ON LASER INTERACTION WITH MATTER, 2001, 4424 : 553 - 556
  • [50] X-ray source produced by laser solid target interaction at kHz repetition rate
    Huang Kai
    Yan Wen-Chao
    Li Ming-Hua
    Tao Meng-Ze
    Chen Yan-Ping
    Chen Jie
    Yuan Xiao-Hui
    Zhao Jia-Rui
    Ma Yong
    Li Da-Zhang
    Gao Jie
    Chen Li-Ming
    Zhang Jie
    ACTA PHYSICA SINICA, 2013, 62 (20)