Photon dose produced by a high-intensity laser on a solid target

被引:19
|
作者
La Fontaine, A. Compant [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
laser-plasma interaction at ultra-high high-intensity; bremsstrahlung emission; photon dose; gamma rays; multi-MeV electron and photon production; particle in cell and Monte Carlo PIC codes; HOT-ELECTRON PRODUCTION; PLASMA INTERACTIONS; NUCLEAR-REACTIONS; FAST-IGNITER; SHORT-PULSE; ACCELERATION; ABSORPTION; ULTRASHORT; PARTICLE; FIELD;
D O I
10.1088/0022-3727/47/32/325201
中图分类号
O59 [应用物理学];
学科分类号
摘要
When a high-intensity laser pulse hits a solid target, its pedestal creates a preplasma. The interaction of the main laser pulse, linearly polarized, with this preplasma produces relativistic electrons. These electrons subsequently penetrate inside the target, with high atomic number, and produce bremsstrahlung emission, which constitutes an x-ray source that may be used in various applications such as radiography of high area density objects, photonuclear studies or positron production. This x-ray source is mainly defined by its photon dose, which depends upon the laser, preplasma and target characteristics. In new facilities the radioprotection layout design can be obtained by numerical simulations, which are somewhat tedious. A simple model giving the photon dose per laser energy unit is obtained by using the mean bremsstrahlung cross section of electrons interacting with the atoms of the conversion target. It is expressed versus the fraction eta(e1) of the laser energy absorbed into the forward hot electrons, their mean kinetic energy E, the photon lobe emission mean angular aperture (theta) over bar and the target characteristics, i. e. thickness, element, atomic mass and atomic number. The parameters eta(e1) , E and (theta) over bar are analysed by applying the energy and momentum flux conservation laws during the laser-plasma interaction in the relativistic regime in an underdense and overdense plasma, including the hole-boring effect. In addition, these quantities are parametrized versus the normalized laser vector potential a(0) and the preplasma scale length L-p by using a full set of numerical simulations, in the laser intensity domain 10(18)-10(21)Wcm(-2) and preplasma scale length range 0.03-400 mu m. These simulations are done in two-and three-dimensional geometry with the CALDER particle-in-cell code, which computes the laser-plasma interaction, and with the MCNP Monte Carlo code, which calculates the bremsstrahlung emission. The present model is compared with the simulations and with experimental results.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] High field suppression of bremsstrahlung emission in high-intensity laser-plasma interactions
    Habibi, M.
    Arefiev, A.
    Toncian, T.
    PHYSICS OF PLASMAS, 2023, 30 (10)
  • [32] Guiding femtosecond high-intensity high-contrast laser pulses by copper capillaries
    Lotov, K. V.
    Gubin, K. V.
    Leshchenko, V. E.
    Trunov, V. I.
    Pestryakov, E. V.
    PHYSICS OF PLASMAS, 2015, 22 (10)
  • [33] Investigation of optical properties of an overdense magnetized plasma lens in the interaction with high-intensity Gaussian laser pulses
    Ghorbanalilu, M.
    Shokri, B.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (03): : 1 - 7
  • [34] Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation
    Maksimchuk, A.
    Raymond, A.
    Yu, F.
    Petrov, G. M.
    Dollar, F.
    Willingale, L.
    Zulick, C.
    Davis, J.
    Krushelnick, K.
    APPLIED PHYSICS LETTERS, 2013, 102 (19)
  • [35] High-Order Harmonics from Bow Wave Caustics Driven by a High-Intensity Laser
    Esirkepov, T. Zh.
    Pirozhkov, A. S.
    Kando, M.
    Gallegos, P.
    Ahmed, H.
    Ragozin, E. N.
    Faenov, A. Ya.
    Pikuz, T. A.
    Kawachi, T.
    Sagisaka, A.
    Koga, J. K.
    Coury, M.
    Green, J.
    Foster, P.
    Brenner, C.
    Dromey, B.
    Symes, D. R.
    Mori, M.
    Kawase, K.
    Kameshima, T.
    Fukuda, Y.
    Chen, L. M.
    Daito, I.
    Ogura, K.
    Hayashi, Y.
    Kotaki, H.
    Kiriyama, H.
    Okada, H.
    Nishimori, N.
    Imazono, T.
    Kondo, K.
    Kimura, T.
    Tajima, T.
    Daido, H.
    Rajeev, P.
    Mckenna, P.
    Borghesi, M.
    Neely, D.
    Kato, Y.
    Bulanov, S. V.
    LASER-DRIVEN RELATIVISTIC PLASMAS APPLIED TO SCIENCE, ENERGY, INDUSTRY, AND MEDICINE, 2012, 1465 : 172 - 180
  • [36] Observation of non-symmetric side-scattering during high-intensity laser-plasma interactions
    Arunachalam, Ajay K.
    Schwab, Matthew B.
    Saevert, Alexander
    Kaluza, Malte C.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [37] High-intensity laser-driven secondary radiation sources using the ZEUS 45 TW laser system at the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University Research Centre
    Clark, E. L.
    Grigoriadis, A.
    Petrakis, S.
    Tazes, I
    Andrianaki, G.
    Skoulakis, A.
    Orphanos, Y.
    Kaselouris, E.
    Fitilis, I
    Chatzakis, J.
    Bakarezos, E.
    Dimitriou, V
    Benis, E. P.
    Papadogiannis, N. A.
    Tatarakis, M.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9
  • [38] Postionisation of a spatially nonuniform plasma plume under high-intensity femtosecond laser irradiation
    Krestovskikh, D. A.
    Ivanov, K. A.
    Tsymbalov, I. N.
    Shulyapov, S. A.
    Bukin, V. V.
    Volkov, R. V.
    Rupasov, A. A.
    Savel'ev, A. B.
    QUANTUM ELECTRONICS, 2017, 47 (01) : 42 - 47
  • [39] Exploring high-intensity QED at ELI
    Heinzl, T.
    Ilderton, A.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02) : 359 - 364
  • [40] Self-compression of a high-intensity laser pulse in a double-ionizing gas
    Jain, Arohi
    Gupta, Devki Nandan
    Kumar, Saurabh
    PHYSICS OF PLASMAS, 2022, 29 (01)