Schreier split epimorphisms between monoids

被引:21
作者
Bourn, Dominique [1 ]
Martins-Ferreira, Nelson [2 ]
Montoli, Andrea [3 ]
Sobral, Manuela [3 ,4 ]
机构
[1] Univ Littoral Cote dOpale, Lab Math Pures & Appl, Calais, France
[2] Inst Politecn Leiria, ESTG, CDRSP, Leiria, Portugal
[3] Univ Coimbra, CMUC, P-3001454 Coimbra, Portugal
[4] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
关键词
Schreier split epimorphisms; Monoids; Split short five lemma; Internal relations;
D O I
10.1007/s00233-014-9571-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore some properties of Schreier split epimorphisms between monoids, which correspond to monoid actions. In particular, we prove that the split short five lemma holds for monoids, when it is restricted to Schreier split epimorphisms, and that any Schreier reflexive relation is transitive, partially recovering in monoids a classical property of Mal'tsev varieties.
引用
收藏
页码:739 / 752
页数:14
相关论文
共 8 条
  • [1] BOURN D, 1991, LECT NOTES MATH, V1488, P43
  • [2] Bourn D., 2014, TEXTOS MATEMATICA B
  • [3] DIAGRAM CHASING IN MALCEV CATEGORIES
    CARBONI, A
    LAMBEK, J
    PEDICCHIO, MC
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 69 (03) : 271 - 284
  • [4] CO-HOMOLOGY NON-ABELIAN OF ALGEBRAIC STRUCTURES
    LAVENDHOMME, R
    ROISIN, JR
    [J]. JOURNAL OF ALGEBRA, 1980, 67 (02) : 385 - 414
  • [5] Malcev A. I., 1954, Mat. Sb., V35, P3
  • [6] Semidirect products and crossed modules in monoids with operations
    Martins-Ferreira, Nelson
    Montoli, Andrea
    Sobral, Manuela
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) : 334 - 347
  • [7] Patchkoria A, 1998, GEORGIAN MATH J, V5, P575, DOI DOI 10.1023/B:GEOR.0000008133.94825.60
  • [8] Redei L., 1952, Acta Sci. Math. (Szeged), V14, P252