ICAR ATRP for Estimation of Intrinsic Macro-Activation/Deactivation Arrhenius Parameters under Polymerization Conditions

被引:30
作者
Porras, Carolina Toloza [1 ]
D'hooge, Dagmar R. [1 ]
Van Steenberge, Paul H. M. [1 ]
Reyniers, Marie-Francoise [1 ]
Marin, Guy B. [1 ]
机构
[1] Univ Ghent, Lab Chem Technol LCT, B-9052 Ghent, East Flanders, Belgium
关键词
TRANSFER RADICAL POLYMERIZATION; NITROXIDE MEDIATED POLYMERIZATION; DIFFUSION-CONTROLLED REACTIONS; ACTIVATION RATE CONSTANTS; N-BUTYL ACRYLATE; METHYL-METHACRYLATE; CHAIN TRANSFER; EQUILIBRIUM-CONSTANTS; RATE COEFFICIENTS; METALLIC COPPER;
D O I
10.1021/ie5007596
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The potential of Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP) to determine reliable Arrhenius parameters for ATRP activation/deactivation of macrospecies is illustrated using styrene as monomer and CuBr2/TPMA (TPMA: tris(2-pyridylmethyl)amine) as deactivator. Regression is based on an extensive set of experimental data limited to conversions below 0.50 to avoid the interference of diffusional limitations on the activation/deactivation process and recorded at temperatures below 90 degrees C to avoid the influence of thermal self-initiation. Diffusional limitations on termination are accounted for based on literature data. The activation energy for the activation and deactivation reaction involving macrospecies are respectively 29 and 1.7 kJ mol(-1). The corresponding pre-exponentional factors are 6.9 x 10(5) and 1.8 x 10(7) L mol(-1) s(-1). At 70 degrees C, the corresponding rate coefficients amount to 2.2 x 10 and 9.9 x 10(6) L mol(-1) s(-1) confirming the relatively high activity of CuBr/TPMA as ATRP catalyst.
引用
收藏
页码:9674 / 9685
页数:12
相关论文
共 59 条
  • [21] Bimolecular radical termination: New perspectives and insights
    Johnston-Hall, Geoffrey
    Monteiro, Michael J.
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (10) : 3155 - 3173
  • [22] Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms
    Konkolewicz, Dominik
    Wang, Yu
    Zhong, Mingjiang
    Krys, Pawel
    Isse, Abdirisak A.
    Gennaro, Armando
    Matyjaszewski, Krzysztof
    [J]. MACROMOLECULES, 2013, 46 (22) : 8749 - 8772
  • [23] Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes
    Konkolewicz, Dominik
    Sosnowski, Stanislaw
    D'hooge, Dagmar R.
    Szymanski, Ryszard
    Reyniers, Marie-Francoise
    Marin, Guy B.
    Matyjaszewski, Krzysztof
    [J]. MACROMOLECULES, 2011, 44 (21) : 8361 - 8373
  • [24] ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst
    Kwak, Yungwan
    Magenau, Andrew J. D.
    Matyjaszewski, Krzysztof
    [J]. MACROMOLECULES, 2011, 44 (04) : 811 - 819
  • [25] Levenberg K., 1944, Q APPL MATH, V2, P164, DOI [10.1090/qam/10666, DOI 10.1090/QAM/10666]
  • [26] Kinetics and Modeling of Solution ARGET ATRP of Styrene, Butyl Acrylate, and Methyl Methacrylate
    Li, Xiaohui
    Wang, Wen-Jun
    Li, Bo-Geng
    Zhu, Shiping
    [J]. MACROMOLECULAR REACTION ENGINEERING, 2011, 5 (9-10) : 467 - 478
  • [27] Recent Developments in Atom Transfer Radical Polymerization (ATRP): Methods to Reduce Metal Catalyst Concentrations
    Lou, Qin
    Shipp, Devon A.
    [J]. CHEMPHYSCHEM, 2012, 13 (14) : 3257 - 3261
  • [28] Marquardt D., 1963, SIAM J APPL MATH, V11, P431, DOI [DOI 10.1137/0111030, 10.1137/0111030]
  • [29] Atom transfer radical polymerization
    Matyjaszewski, K
    Xia, JH
    [J]. CHEMICAL REVIEWS, 2001, 101 (09) : 2921 - 2990
  • [30] Matyjaszewski K., 2002, HDB RADICAL POLYM