A MACROSCOPIC MODEL INCLUDING MEMBRANE EXCHANGE FOR DIFFUSION MRI

被引:15
|
作者
Coatleven, Julien [1 ]
Haddar, Houssem [1 ]
Li, Jing-Rebecca [1 ]
机构
[1] INRIA Saclay, Ecole Polytech, CMAP, Equipe DEFI, F-91128 Palaiseau, France
关键词
diffusion MRI; diffusion equations; homogenized model; DUAL-POROSITY SYSTEMS; MAGNETIC-RESONANCE; GRAVITATIONAL FORCES; RESTRICTED DIFFUSION; WATER DIFFUSION; WHITE-MATTER; BRAIN; COMPARTMENTATION; QUANTIFICATION; CONDUCTIVITY;
D O I
10.1137/130914255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Diffusion Magnetic Resonance Imaging is a promising tool to obtain useful information on the microscopic structure and has been extensively applied to biological tissues. We establish a new macroscopic model from homogenization theory for the complex transverse water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses in the case of intermediate water exchange across biological cellular membranes. Based on a particular scaling of the permeability condition modeling cellular membranes, this macroscopic model reproduces the memory effects often observed in experiments. Explicit formulae given by homogenization for the coefficients of this model emphasize their link to the relevant physiological quantities. In addition, we explicitly solve the macroscopic model to obtain an ODE model for the dMRI signal. This ODE model is numerically easy to invert, and the inverse problem of retrieving model coefficients from synthetic diffusion MRI (dMRI) signal data is considered.
引用
收藏
页码:516 / 546
页数:31
相关论文
共 50 条
  • [31] Orientationally invariant indices of axon diameter and density from diffusion MRI
    Alexander, Daniel C.
    Hubbard, Penny L.
    Hall, Matt G.
    Moore, Elizabeth A.
    Ptito, Maurice
    Parker, Geoff J. M.
    Dyrby, Tim B.
    NEUROIMAGE, 2010, 52 (04) : 1374 - 1389
  • [32] Diffusion Weighted and Diffusion Tensor MRI in Pediatric Neuroimaging Including Connectomics: Principles and Applications
    Meoded, Avner
    Orman, Gunes
    Huisman, Thierry A. G. M.
    SEMINARS IN PEDIATRIC NEUROLOGY, 2020, 33
  • [33] Mathematical justification of macroscopic models for diffusion MRI through the periodic unfolding method
    Coatleven, Julien
    ASYMPTOTIC ANALYSIS, 2015, 93 (03) : 219 - 258
  • [34] ANALYSIS OF ADC MODEL ROBUSTNESS IN DIFFUSION-WEIGHTED MRI
    Taqdees, Syeda Warda
    Ng, Amanda
    Wright, David K.
    Tolcos, Mary
    Johnston, Leigh A.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 966 - 969
  • [35] Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces
    Agdestein, Syver Doving
    Try Nguyen Tran
    Li, Jing-Rebecca
    NMR IN BIOMEDICINE, 2022, 35 (03)
  • [36] Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI
    Henriques, Rafael Neto
    Jespersen, Sune N.
    Shemesh, Noam
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (05) : 3245 - 3261
  • [37] The visual white matter: The application of diffusion MRI and fiber tractography to vision science
    Rokem, Ariel
    Takemura, Hiromasa
    Bock, Andrew S.
    Scherf, K. Suzanne
    Behrmann, Marlene
    Wandell, Brian A.
    Fine, Ione
    Bridge, Holly
    Pestilli, Franco
    JOURNAL OF VISION, 2017, 17 (02): : 4
  • [38] Diffusion time dependence, power-law scaling, and exchange in gray matter
    Olesen, Jonas L.
    Ostergaard, Leif
    Shemesh, Noam
    Jespersen, Sune N.
    NEUROIMAGE, 2022, 251
  • [39] Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome
    Wu, Dan
    Zhang, Yi
    Cheng, Bei
    Mori, Susumu
    Reeves, Roger H.
    Gao, Feng J.
    BRAIN COMMUNICATIONS, 2021, 3 (02)
  • [40] Dipy, a library for the analysis of diffusion MRI data
    Garyfallidis, Eleftherios
    Brett, Matthew
    Amirbekian, Bagrat
    Rokem, Ariel
    van der Walt, Stefan
    Descoteaux, Maxime
    Nimmo-Smith, Ian
    FRONTIERS IN NEUROINFORMATICS, 2014, 8