Ensemble of Machine Learning Algorithms for Cognitive and Physical Speaker Load Detection

被引:0
作者
Jing, How [1 ]
Hu, Ting-Yao [2 ]
Lee, Hung-Shin [3 ]
Chen, Wei-Chen [4 ]
Lee, Chi-Chun [4 ]
Tsao, Yu [1 ]
Wang, Hsin-Min [3 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan
[2] Natl Taiwan Univ, Grad Inst Commun Engn, Taipei, Taiwan
[3] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[4] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
来源
15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4 | 2014年
关键词
Physical Load Detection; Cognitive Load Detection; Neural Network; Classification Models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present our methods and results on participating in the Inter speech 2014 Computational Paralinguistics ChallengE (ComParE) of which the goal is to detect certain type of load of a speaker using acoustic features. There are in total seven classification models contributing to our final prediction, namely, neural network with rectified linear unit and dropout (ReLUNet), conditional restricted Boltzmann machine (CRBM), logistic regression (LR), support vector machine (SVM), Gaussian discriminant analysis (GDA), k-nearest neighbors (KNN), and random forest (RF). When linearly blending the predictions of these models, we are able to get significant improvements over the challenge baseline.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 50 条
[31]   Building Resilience in Banking Against Fraud with Hyper Ensemble Machine Learning and Anomaly Detection Strategies [J].
Vashistha A. ;
Tiwari A.K. .
SN Computer Science, 5 (5)
[32]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[33]   Machine Learning in Physical Design [J].
Li, Bowen ;
Franzon, Paul D. .
2016 IEEE 25TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2016, :147-149
[34]   An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms [J].
Akhtar, Shamim ;
Bin Sujod, Muhamad Zahim ;
Rizvi, Syed Sajjad Hussain .
ENERGIES, 2022, 15 (15)
[35]   Analysis of Methods, Metrics, and Directions in Shilling Attack Detection using Machine Learning Algorithms [J].
Hamidi, H. ;
Khatami, F. .
INTERNATIONAL JOURNAL OF ENGINEERING, 2025, 38 (12) :3009-3030
[36]   Anomaly detection in wide area network meshes using two machine learning algorithms [J].
Zhang, James ;
Gardner, Robert ;
Vukotic, Ilija .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 93 :418-426
[37]   Performance Optimization of Machine-Learning Algorithms for Fault Detection and Diagnosis in PV Systems [J].
Quiles-Cucarella, Eduardo ;
Sanchez-Roca, Pedro ;
Agusti-Mercader, Ignacio .
ELECTRONICS, 2025, 14 (09)
[38]   Detection and Classification of Defects in XLPE Power Cable Insulation via Machine Learning Algorithms [J].
Saleh, Mohammad AlShaikh ;
Refaat, Shady S. ;
Khatri, Sunil P. ;
Ghrayeb, Ali .
3RD INTERNATIONAL CONFERENCE ON SMART GRID AND RENEWABLE ENERGY (SGRE), 2022,
[39]   Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review [J].
Miltiadous, Andreas ;
Tzimourta, Katerina D. ;
Giannakeas, Nikolaos ;
Tsipouras, Markos G. ;
Glavas, Euripidis ;
Kalafatakis, Konstantinos ;
Tzallas, Alexandros T. .
IEEE ACCESS, 2023, 11 :564-594
[40]   Investigating Multi-Modal Measures for Cognitive Load Detection in E-Learning [J].
Herbig, Nico ;
Duewel, Tim ;
Helali, Mossad ;
Eckhart, Lea ;
Schuck, Patrick ;
Choudhury, Subhabrata ;
Krueger, Antonio .
UMAP'20: PROCEEDINGS OF THE 28TH ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, 2020, :88-97