Dual canonical bases, quantum shuffles and q-characters

被引:71
作者
Leclerc, B [1 ]
机构
[1] Univ Caen, Dept Math, F-14032 Caen, France
关键词
D O I
10.1007/s00209-003-0609-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rosso and Green have shown how to embed the positive part U-q (n) of a quantum enveloping algebra U-q(g) in a quantum shuffle algebra. In this paper we study some properties of the image of the dual canonical basis B* of U-q(n) under this embedding Phi. This is motivated by the fact that when g is of type A(r), the elements of Phi (B*) are q-analogues of irreducible characters of the affine Iwahori-Hecke algebras attached to the groups GL (m) over a p-adic field.
引用
收藏
页码:691 / 732
页数:42
相关论文
共 43 条
[1]  
[Anonymous], PROGR MATH
[2]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[3]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[4]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[5]  
BOURBAKI N, 1968, GROUPES ALGEBRES LIE, pCH6
[6]   Kazhdan-Luszti polynomials and character formulae for the Lie superalebra gl(m|n) [J].
Brundan, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :185-231
[7]  
BRUNDAN J, IN PRESS ADV MATH
[8]  
Brundan J., 2001, REPRESENT THEOR, V5, P317, DOI DOI 10.1090/S1088-4165-01-00123-6
[9]   Adapted algebras for the Berenstein-Zelevinsky conjecture [J].
Caldero, P .
TRANSFORMATION GROUPS, 2003, 8 (01) :37-50
[10]  
CHARI V, 1999, AMS CONT MATH, V248, P69