On the complexity of finding first-order critical points in constrained nonlinear optimization

被引:40
作者
Cartis, Coralia [1 ]
Gould, Nicholas I. M. [2 ]
Toint, Philippe L. [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Rutherford Appleton Lab, Computat Sci & Engn Dept, Chilton OX11 0QX, Oxon, England
[3] FUNDP Univ Namur, Dept Math, Namur Ctr Complex Syst NaXys, B-5000 Namur, Belgium
基金
英国工程与自然科学研究理事会;
关键词
Evaluation complexity; Worst-case analysis; Constrained nonlinear optimization; CUBIC REGULARIZATION; NONCONVEX; MINIMIZATION; ALGORITHMS;
D O I
10.1007/s10107-012-0617-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The complexity of finding -approximate first-order critical points for the general smooth constrained optimization problem is shown to be no worse that in terms of function and constraints evaluations. This result is obtained by analyzing the worst-case behaviour of a first-order short-step homotopy algorithm consisting of a feasibility phase followed by an optimization phase, and requires minimal assumptions on the objective function. Since a bound of the same order is known to be valid for the unconstrained case, this leads to the conclusion that the presence of possibly nonlinear/nonconvex inequality/equality constraints is irrelevant for this bound to apply.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 15 条
[1]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[2]   On the convergence of successive linear-quadratic programming algorithms [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :471-489
[3]   An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1662-1695
[4]   ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :2833-2852
[5]  
Cartis C., 2011, 11013 ERGO U ED SCH
[6]  
CARTIS C, 2011, 11009 ERGO U ED SCH
[7]   ON THE ORACLE COMPLEXITY OF FIRST-ORDER AND DERIVATIVE-FREE ALGORITHMS FOR SMOOTH NONCONVEX MINIMIZATION [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (01) :66-86
[8]   ON THE EVALUATION COMPLEXITY OF COMPOSITE FUNCTION MINIMIZATION WITH APPLICATIONS TO NONCONVEX NONLINEAR PROGRAMMING [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1721-1739
[9]   Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2011, 130 (02) :295-319
[10]   Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2011, 127 (02) :245-295