Observables on synaptic algebras

被引:1
作者
Jencova, A. [1 ]
Pulmannova, S. [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
Synaptic algebras; Observables; Smearings; Effect algebras; GH-algebras; SIGMA-MV ALGEBRAS; FUZZY OBSERVABLES; THEOREM; CONVEX; SHARP;
D O I
10.1016/j.fss.2020.05.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Synaptic algebras, introduced by D. Foulis, generalize different algebraic structures used so far as mathematical models of quantum mechanics: the traditional Hilbert space approach, order unit spaces, Jordan algebras, effect algebras, MV-algebras, orthomodular lattices. We study sharp and fuzzy observables on two special classes of synaptic algebras: on the so called generalized Hermitian algebras and on synaptic algebras which are Banach space duals. Relations between fuzzy and sharp observables on these two types of synaptic algebras are shown. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 45 条
  • [1] GELFAND-NEUMARK THEOREM FOR JORDAN ALGEBRAS
    ALFSEN, EM
    SHULTZ, FW
    STORMER, E
    [J]. ADVANCES IN MATHEMATICS, 1978, 28 (01) : 11 - 56
  • [2] Alfsen Erik M., 1971, COMPACT CONVEX SETS
  • [3] Alfsen Erik M., 2001, MATH THEORY, V1, DOI 10.1007/978-1-4612-0147-2
  • [4] Commutative POVMs and Fuzzy Observables
    Ali, S. Twareque
    Carmeli, Claudio
    Heinosaari, Teiko
    Toigo, Alessandro
    [J]. FOUNDATIONS OF PHYSICS, 2009, 39 (06) : 593 - 612
  • [5] [Anonymous], 1972, Grundlehren der mathematischen Wissenschaften
  • [6] Beran L., 1984, Orthomodular Lattices: algebraic approach
  • [7] Convex effect algebras, state ordered effect algebras, and ordered linear spaces
    Bugajski, S
    Gudder, S
    Pulmannová, S
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2000, 45 (03) : 371 - 388
  • [8] TRIANGULAR NORM-BASED MEASURES AND THEIR MARKOV KERNEL REPRESENTATION
    BUTNARIU, D
    KLEMENT, EP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (01) : 111 - 143
  • [9] Chang CC., 1958, Trans. Am. Math. Soc, V88, P467, DOI [10.1090/S0002-9947-1958-0094302-9, DOI 10.1090/S0002-9947-1958-0094302-9]
  • [10] Dvurecenskij A., 2000, NEW TRENDS QUANTUM S