Solvability of some integro-differential equations with concentrated sources

被引:3
作者
Vougalter, Vitali [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Integro-differential equations; Dirac delta function; non Fredholm operators; Sobolev spaces; HOLDER THEORY; FREDHOLM; DIRICHLET; OPERATORS;
D O I
10.1080/17476933.2020.1851213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work deals with the existence of solutions of an integro-differential equation in the case of the normal diffusion and the influx/efflux term proportional to the Dirac delta function. The proof of the existence of solutions is based on a fixed point technique. Solvability conditions for non Fredholm elliptic operators in unbounded domains are used.
引用
收藏
页码:975 / 987
页数:13
相关论文
共 27 条
  • [1] Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One
    Adami, R.
    Noja, D.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 1 - 16
  • [2] Standing lattice solitons in the discrete NLS equation with saturation
    Alfimov, G. L.
    Korobeinikov, A. S.
    Lustri, C. J.
    Pelinovsky, D. E.
    [J]. NONLINEARITY, 2019, 32 (09) : 3445 - 3484
  • [3] Wave Systems with an Infinite Number of Localized Traveling Waves
    Alfimov, Georgy L.
    Medvedeva, Elina V.
    Pelinovsky, Dmitry E.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [4] Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces
    Amrouche, C
    Girault, V
    Giroire, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01): : 55 - 81
  • [5] Mixed exterior Laplace's problem
    Amrouche, Cherif
    Bonzom, Florian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 124 - 140
  • [6] [Anonymous], 2010, Int. J. Pure Appl. Math
  • [7] BENKIRANE N, 1988, CR ACAD SCI I-MATH, V307, P577
  • [8] BOLLEY P, 1993, J MATH PURE APPL, V72, P105
  • [9] Index property in Holderian theory for the Dirichlet exterior problem
    Bolley, P
    Lai, PT
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) : 315 - 334
  • [10] Coombes Stephen, 2014, Neural fields: theory and applications