On the minimum rank of adjacency matrices of regular graph

被引:0
|
作者
Liang, Xiu-dong [1 ]
机构
[1] So Yangtze Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
Advances in Matrix Theory and Applications | 2006年
关键词
regular graphs; adjacency matrices; rank; lower bound;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at obtaining the lower bound of minimum rank of adjacent matrices of k-regular graphs. Additionally, the exact values are obtained for k=2.
引用
收藏
页码:346 / 348
页数:3
相关论文
共 50 条
  • [31] SOME OBSERVATIONS ON THE SMALLEST ADJACENCY EIGENVALUE OF A GRAPH
    Cioaba, Sebastian M.
    Elzinga, Randall J.
    Gregory, David A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 467 - 493
  • [32] Minimum rank problems
    Hogben, Leslie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (08) : 1961 - 1974
  • [33] Relation between the rank of a signed graph and the rank of its underlying graph
    Wang, Shujing
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2520 - 2539
  • [34] The minimum rank problem over the finite field of order 2: Minimum rank 3
    Barrett, Wayne
    Grout, Jason
    Loewy, Raphael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 890 - 923
  • [35] COMPLETELY POSITIVE MATRICES WITH (A)=Rank(A)
    Xu Changqing(Dept.of Math.
    Numerical Mathematics(Theory,Methods and Applications), 2000, (S1) : 49 - 52
  • [36] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130
  • [37] Partial matrices of constant rank
    McTigue, James
    Quinlan, Rachel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 177 - 191
  • [38] A Note on the Rank of Inclusion Matrices
    Feng, Tao
    Huang, Shenwei
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [39] On rank range of interval matrices
    Rubei, Elena
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 561 : 81 - 97
  • [40] Similarity and matrices of constant rank
    Flick-D'Ornano, JC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 295 (1-3) : 145 - 148