On the minimum rank of adjacency matrices of regular graph

被引:0
|
作者
Liang, Xiu-dong [1 ]
机构
[1] So Yangtze Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
Advances in Matrix Theory and Applications | 2006年
关键词
regular graphs; adjacency matrices; rank; lower bound;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at obtaining the lower bound of minimum rank of adjacent matrices of k-regular graphs. Additionally, the exact values are obtained for k=2.
引用
收藏
页码:346 / 348
页数:3
相关论文
共 50 条
  • [1] Rank of adjacency matrices of directed (strongly) regular graphs
    Jorgensen, LK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 : 233 - 241
  • [2] The minimum rank of symmetric matrices described by a graph: A survey
    Fallat, Shaun M.
    Hogben, Leslie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 558 - 582
  • [3] Minimum rank of skew-symmetric matrices described by a graph
    Allison, Mary
    Bodine, Elizabeth
    DeAlba, Luz Maria
    Debnath, Joyati
    DeLoss, Laura
    Garnett, Colin
    Grout, Jason
    Hogben, Leslie
    Im, Bokhee
    Kim, Hana
    Nair, Reshmi
    Pryporova, Olga
    Savage, Kendrick
    Shader, Bryan
    Wehe, Amy Wangsness
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2457 - 2472
  • [4] UNIVERSALLY OPTIMAL MATRICES AND FIELD INDEPENDENCE OF THE MINIMUM RANK OF A GRAPH
    Dealba, Luz M.
    Grout, Jason
    Hogben, Leslie
    Mikkelson, Rana
    Rasmussen, Kaela
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 403 - 419
  • [5] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [6] A note on universally optimal matrices and field independence of the minimum rank of a graph
    Huang, Liang-Hao
    Chang, Gerard J.
    Yeh, Hong-Gwa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) : 585 - 594
  • [7] An upper bound for the minimum rank of a graph
    Berman, Avi
    Friedland, Shmuel
    Hogben, Leslie
    Rothblum, Uriel G.
    Shader, Bryan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1629 - 1638
  • [8] On the minimum semidefinite rank of a simple graph
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Lenker, Terry D.
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Sutton, Brian D.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 483 - 506
  • [9] α-ADJACENCY: A GENERALIZATION OF ADJACENCY MATRICES
    Hudelson, M.
    Mcdonald, J.
    Wendler, E.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 365 - 375
  • [10] On the p-Ranks of the Adjacency Matrices of Distance-Regular Graphs
    René Peeters
    Journal of Algebraic Combinatorics, 2002, 15 : 127 - 149