Sr4Nd2Ti4Nb6O30 tungsten bronze thick films prepared by electrophoretic deposition as a temperature-stable dielectric

被引:6
作者
Zhu, Xiaoli [1 ,2 ]
Vilarinho, Paula M. [1 ]
机构
[1] Univ Aveiro, CICECO, Ctr Res Ceram & Composite Mat, Dept Mat & Ceram Engn, P-3810193 Aveiro, Portugal
[2] Zhejiang Univ, Dept Mat Sci & Engn, Lab Dielect Mat, Hangzhou 310027, Peoples R China
关键词
Tungsten bronze; Sr4Nd2Ti4Nb6O30; Thick films; Electrophoretic deposition; Dielectric properties; CERAMICS; SUBSTRATE;
D O I
10.1016/j.jeurceramsoc.2015.05.027
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Temperature stable dielectrics of tungsten bronze Sr4Nd2Ti4Nb6O30 (SNTN) with maximized dielectric performance are achieved with thick films prepared by electrophoretic deposition. 30 mu m thick SNTN films sintered at 1300 degrees C, exhibit permittivity epsilon > 375, loss tangent tan delta <0.01 and stable to +/- 7.5% of the room temperature value in the temperature range of -95 degrees C to 280 degrees C. This permittivity is similar to 34% higher than that for bulk ceramics (similar to 280) processed under the same conditions. Contrary to the microstructure of ceramics, SNTN thick films exhibit anisotropy of the grain growth with increasing sintering temperature. It is proposed that the observed anisotropy is responsible for the maximization of the dielectric properties and is due to the anisotropic crystal structure of SNTN and to the sintering under constraint. The main contribution of the c axis vibration to the dielectric constant in tungsten bronze SNTN is confirmed. These results are relevant because via tailoring the substrate constraint and sintering conditions the grain anisotropy of SNTN thick films can be controlled and thus the dielectric properties. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 388
页数:8
相关论文
共 50 条
[11]   Electrophoretic deposition of SrBi4Ti4O15 thick films on Al2O3 substrate [J].
Gu, D. G. ;
Li, G. R. ;
Xu, Z. J. ;
Zheng, L. Y. ;
Ding, A. L. ;
Yin, Q. R. .
JOURNAL OF ELECTROCERAMICS, 2008, 21 (1-4) :532-535
[12]   Electrophoretic deposition of SrBi4Ti4O15 thick films on Al2O3 substrate [J].
D. G. Gu ;
G. R. Li ;
Z. J. Xu ;
L. Y. Zheng ;
A. L. Ding ;
Q. R. Yin .
Journal of Electroceramics, 2008, 21 :532-535
[13]   Impedance analysis of K2Pb2X2W2Ti4Nb4O30 (X = Nd, Y) tungsten bronze ceramics [J].
R. Padhee ;
Piyush R. Das ;
B. N. Parida ;
R. N. P. Choudhary .
Journal of the Korean Physical Society, 2014, 64 :1022-1030
[14]   High-temperature dielectric relaxation mechanism in Ba4SmFe0.5Nb9.5O30 tungsten bronze ceramics [J].
Hu, Changzheng ;
Guo, Zhe ;
Wu, Shan ;
Sun, Zhen ;
Li, Chunchun ;
Liu, Laijun ;
Fang, Liang .
CERAMICS INTERNATIONAL, 2018, 44 :S224-S227
[15]   Photoelectrochemical properties of layered niobate (K4Nb6O17) films prepared by electrophoretic deposition [J].
Koinuma, M ;
Seki, H ;
Matsumoto, Y .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 531 (01) :81-85
[16]   Textured Microstructure and Dielectric Properties Relationship of BaNd2Ti5O14 Thick Films Prepared by Electrophoretic Deposition [J].
Fu, Zhi ;
Vilarinho, Paula M. ;
Wu, Aiying ;
Kingon, Angus I. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (07) :1071-1081
[17]   Temperature-Stable High Dielectric Constant and Dielectric Relaxation in (1-x)Sr0.5Ba0.5Nb2O6/xNi0.8Cu0.2Fe2O4 Composite Ceramics [J].
Lin, Y. Q. ;
Chen, X. M. .
FERROELECTRICS, 2009, 388 :153-160
[18]   Ba2TiO4 and Ba4Ti13O30 Thick Films Prepared by Laser Chemical Vapor Deposition and Their Microstructure [J].
Guo, Dongyun ;
Ito, Akihiko ;
Tu, Rong ;
Goto, Takashi .
MATERIALS INTEGRATION, 2012, 508 :199-202
[19]   Ba4Ln2Fe2Ta8O30 (Ln=Pr, Eu): Temperature-Stable Low Loss Dielectrics with a Tungsten Bronze Structure [J].
Fang, Liang ;
Peng, Xiyang ;
Li, Chunchun ;
Hu, Changzheng ;
Wu, Bolin ;
Zhou, Huanfu .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (04) :945-947
[20]   Dielectric and ferroelectric characteristics of Ba4Pr2Fe2Nb8O30 tungsten bronze ceramics [J].
Gao, Ting Ting ;
Chen, Wang ;
Zhu, Xiao Na ;
Zhu, Xiao Li ;
Chen, Xiang Ming .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 181 :47-53