Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production

被引:41
作者
Chabrolles, Helene [1 ]
Auclair, Heloise [1 ]
Vegna, Serena [1 ]
Lahlali, Thomas [1 ]
Pons, Caroline [1 ]
Michelet, Maud [1 ]
Coute, Yohann [2 ]
Belmudes, Lucid [2 ]
Chadeuf, Gilliane [3 ]
Kim, Yujin [1 ]
Di Bernardo, Ariel [1 ]
Jalaguier, Pascal [1 ]
Cosset, Francois-Loic [4 ]
Fusil, Floriane [4 ]
Rivoire, Michel [5 ]
Arnold, Lee D. [6 ]
Lopatin, Uri [7 ]
Combet, Christophe [1 ]
Zoulim, Fabien [1 ]
Grierson, David [8 ]
Chabot, Benoit [9 ]
Lucifora, Julie [1 ]
Durantel, David [1 ]
Salvetti, Anna [1 ]
机构
[1] Univ Lyon, CNRS, INSERM, U1052,CRCL,UCBL1,Ctr Leon Berard, Lyon, France
[2] Univ Grenoble Alpes, CEA, INSERM, IRIG,BGE, Grenoble, France
[3] Univ Nantes, CNRS UMR6291, Inst Thorax, INSERM U1087, Nantes, France
[4] Univ Lyon, CNRS, Ecole Normale Super Lyon, INSERM U1111,Int Ctr Infectiol Res CIRI,UCL1,UR53, F-UMR5308 Lyon, France
[5] INSERM U1032, CLB, Lyon, France
[6] DiscoverElucidations LLC, Rancho Santa Fe, CA USA
[7] Assembly Biosci, San Francisco, CA USA
[8] Univ British Columbia, Fac Pharmaceut Sci, Vancouver, BC, Canada
[9] Univ Sherbrooke, Dept Microbiol & Infect Dis, Fac Med & Hlth Sci, Sherbrooke, PQ, Canada
基金
加拿大健康研究院;
关键词
SPLICING REPRESSOR SRP38; ARGININE-RICH DOMAIN; CLOSED CIRCULAR DNA; GENE-EXPRESSION; SR PROTEINS; POTENTIAL INHIBITORS; TERMINAL DOMAIN; CELL-LINE; REPLICATION; PHOSPHORYLATION;
D O I
10.1371/journal.ppat.1008593
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies. Author summary Chronic infection with Hepatitis B virus (HBV) affects more than 250 million of people world-wide and is a major global cause of liver cancer. Current treatments lead to a significant reduction of viremia in patients. However, viral clearance is rarely obtained and the persistence of the HBV genome in the hepatocyte's nucleus generates a stable source of viral RNAs and subsequently proteins which play important roles in immune escape mechanisms and liver disease progression. Therapies aiming at efficiently and durably eliminating viral gene expression are still required. In this study, we identified the nuclear partners of the HBV Core protein (HBc) to understand how this structural protein, responsible for capsid assembly in the cytoplasm, could also regulate viral gene expression. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs). One of these RBPs, SRSF10, was demonstrated to restrict HBV RNA levels and a drug, able to alter its phosphorylation, behaved as an antiviral compound capable of reducing viral gene expression. Altogether, this study sheds new light novel regulatory functions of HBc and provides information relevant for the development of antiviral strategies aiming at preventing viral gene expression.
引用
收藏
页数:28
相关论文
共 104 条
[1]   RELATIONSHIP BETWEEN THE REPLICATION OF HEPATITIS-B VIRUS AND THE LOCALIZATION OF VIRUS NUCLEOCAPSID ANTIGEN (HBCAG) IN HEPATOCYTES [J].
AKIBA, T ;
NAKAYAMA, H ;
MIYAZAKI, Y ;
KANNO, A ;
ISHII, M ;
OHORI, H .
JOURNAL OF GENERAL VIROLOGY, 1987, 68 :871-877
[2]   HDV RNA replication is associated with HBV repression and interferon-stimulated genes induction in super-infected hepatocytes [J].
Alfaiate, Dulce ;
Lucifora, Julie ;
Abeywickrama-Samarakoon, Natali ;
Michelet, Maud ;
Testoni, Barbara ;
Cortay, Jean-Claude ;
Sureau, Camille ;
Zoulim, Fabien ;
Deny, Paul ;
Durantel, David .
ANTIVIRAL RESEARCH, 2016, 136 :19-31
[3]   Stress granules regulate stress-induced paraspeckle assembly [J].
An, Haiyan ;
Tan, Jing Tong ;
Shelkovnikova, Tatyana A. .
JOURNAL OF CELL BIOLOGY, 2019, 218 (12) :4127-4140
[4]  
[Anonymous], 2011, THER ADV MED ONCOL, V3, pS7
[5]  
[Anonymous], 2013, NUCLEIC ACIDS RES, V41, pD43
[6]  
[Anonymous], 2010, NEPHROL THER, V6, pS27
[7]  
[Anonymous], 2013, NUCLEIC ACIDS RES, V41, pD43
[8]   Repopulation of adult and neonatal mice with human hepatocytes: A chimeric animal model [J].
Bissig, Karl-Dimiter ;
Le, Tam T. ;
Woods, Niels-Bjarne ;
Verma, Inder M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) :20507-20511
[9]   Intracellular transport and egress of hepatitis B virus [J].
Blondot, Marie-Lise ;
Bruss, Volker ;
Kann, Michael .
JOURNAL OF HEPATOLOGY, 2016, 64 :S49-S59
[10]   Structural organization of the hepatitis B virus minichromosome [J].
Bock, CT ;
Schwinn, S ;
Locarnini, S ;
Fyfe, J ;
Manns, MP ;
Trautwein, C ;
Zentgraf, H .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :183-196