Exergoeconomic machine-learning method of integrating a thermochemical Cu-Cl cycle in a multigeneration combined cycle gas turbine for hydrogen production

被引:45
|
作者
Strusnik, Dusan [1 ]
Avsec, Jurij [2 ]
机构
[1] Energetika Ljubljana DOO, TE TOL Unit, Toplarnis ka ul 19, Ljubljana 1000, Slovenia
[2] Univ Maribor, Fac Energy Technol, Hocevarjev trg 1, Krshko 8270, Slovenia
关键词
Machine learning; Thermochemical Cu-Cl cycle; Efficiency; Exergoeconomic; Fuel cell; Hydrogen production; ORGANIC RANKINE-CYCLE; FUEL-CELL; EXERGY ANALYSIS; COMBINED HEAT; ECONOMIC-ANALYSIS; SYSTEM; ENERGY; POWER; OPTIMIZATION; ERROR;
D O I
10.1016/j.ijhydene.2022.03.230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Integrating new technologies into existing thermal energy systems enables multigenerational production of energy sources with high efficiency. The advantages of multigenerational energy production are reflected in the rapid responsiveness of the adaptation of energy source production to current market conditions. To further increase the useful efficiency of multigeneration energy sources production, we developed an exergoeconomic machine-learning model of the integration of the hydrogen thermochemical Cu-Cl cycle into an existing gas-steam power plant. The hydrogen produced will be stored in tanks and consumed when the market price is favourable. The results of the exergoeconomic machine-learning model show that the production and use of hydrogen, in combination with fuel cells, are expedient for the provision of tertiary services in the electricity system. In the event of a breakdown of the electricity system, hydrogen and fuel cells could be used to produce electricity for use by the thermal power plant. The advantages of own or independent production of electricity are primarily reflected in the start-up of a gas-steam power plant, as it is not possible to start a gas turbine without external electricity. The exergy analysis is also in favour of this, as the integration of the hydrogen thermochemical Cu-Cl cycle into the existing gas-steam power plant increases the exergy efficiency of the process. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17121 / 17149
页数:29
相关论文
共 50 条
  • [1] CuCl Electrolysis for Hydrogen Production in the Cu-Cl Thermochemical Cycle
    Balashov, Victor N.
    Schatz, Rich S.
    Chalkova, Elena
    Akinfiev, Nikolay N.
    Fedkin, Mark V.
    Lvov, Serguei N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : B266 - B275
  • [2] Progress of international hydrogen production network for the thermochemical Cu-Cl cycle
    Naterer, G. F.
    Suppiah, S.
    Stolberg, L.
    Lewis, M.
    Wang, Z.
    Dincer, I.
    Rosen, M. A.
    Gabriel, K.
    Secnik, E.
    Easton, E. B.
    Pioro, I.
    Lvov, S.
    Jiang, J.
    Mostaghimi, J.
    Ikeda, B. M.
    Rizvi, G.
    Lu, L.
    Odukoya, A.
    Spekkens, P.
    Fowler, M.
    Avsec, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (02) : 740 - 759
  • [3] Advanced CuCl Electrolyzer for Hydrogen Production via the Cu-Cl Thermochemical Cycle
    Kim, S.
    Schatz, R. S.
    Khurana, S.
    Fedkin, M. V.
    Wang, C.
    Lvov, S. N.
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL)- 219TH ECS MEETING, 2011, 35 (32): : 257 - 265
  • [4] Nafion/Polyaniline composite membranes for hydrogen production in the Cu-Cl thermochemical cycle
    Abdo, Naser
    Easton, E. Bradley
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (19) : 7892 - 7903
  • [5] Canada's program on nuclear hydrogen production and the thermochemical Cu-Cl cycle
    Naterer, G. F.
    Suppiah, S.
    Stolberg, L.
    Lewis, M.
    Wang, Z.
    Daggupati, V.
    Gabriel, K.
    Dincer, I.
    Rosen, M. A.
    Spekkens, P.
    Lvov, S. N.
    Fowler, M.
    Tremaine, P.
    Mostaghimi, J.
    Easton, E. B.
    Trevani, L.
    Rizvi, G.
    Ikeda, B. M.
    Kaye, M. H.
    Lu, L.
    Pioro, I.
    Smith, W. R.
    Secnik, E.
    Jiang, J.
    Avsec, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (20) : 10905 - 10926
  • [6] CuCl/HCl Electrolyzer Kinetics for Hydrogen Production via Cu-Cl Thermochemical Cycle
    Hall, Derek M.
    Schatz, Rich S.
    LaRow, Eric G.
    Lvov, Serguei N.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02): : 15 - 25
  • [7] NEW Cu-Cl THERMOCHEMICAL CYCLE FOR HYDROGEN PRODUCTION WITH REDUCED EXCESS STEAM REQUIREMENTS
    Wang, Z. L.
    Naterer, G. F.
    Gabriel, K. S.
    Gravelsins, R.
    Daggupati, V. N.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2009, 6 (06) : 616 - 626
  • [8] A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a Cu-Cl cycle
    Ozbilen, Ahmet
    Dincer, Ibrahim
    Rosen, Marc A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11321 - 11327
  • [9] Electrochemical, Energy, Exergy, and Exergoeconomic Analyses of Hybrid Photocatalytic Hydrogen Production Reactor for Cu-Cl Cycle
    Ratlamwala, Tahir Abdul Hussain
    Dincer, Ibrahim
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 687 - 704
  • [10] Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle
    Naterer, G.
    Suppiah, S.
    Lewis, M.
    Gabriel, K.
    Dincer, I.
    Rosen, M. A.
    Fowler, M.
    Rizvi, G.
    Easton, E. B.
    Ikeda, B. M.
    Kaye, M. H.
    Lu, L.
    Pioro, I.
    Spekkens, P.
    Tremaine, P.
    Mostaghimi, J.
    Avsec, J.
    Jiang, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) : 2901 - 2917