Interaction of Wind Turbine Wakes under Various Atmospheric Conditions

被引:5
|
作者
Lee, Sang [1 ]
Vorobieff, Peter [1 ]
Poroseva, Svetlana [1 ]
机构
[1] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
关键词
atmospheric boundary layer; wind turbines; energy capture; LARGE-EDDY-SIMULATION; MODEL; FARM; SCALE;
D O I
10.3390/en11061442
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present a numerical study of two utility-scale 5-MW turbines separated by seven rotor diameters. The effects of the atmospheric boundary layer flow on the turbine performance were assessed using large-eddy simulations. We found that the surface roughness and the atmospheric stability states had a profound effect on the wake diffusion and the Reynolds stresses. In the upstream turbine case, high surface roughness increased the wind shear, accelerating the decay of the wake deficit and increasing the Reynolds stresses. Similarly, atmospheric instabilities significantly expedited the wake decay and the Reynolds stress increase due to updrafts of the thermal plumes. The turbulence from the upstream boundary layer flow combined with the turbine wake yielded higher Reynolds stresses for the downwind turbine, especially in the streamwise component. For the downstream turbine, diffusion of the wake deficits and the sharp peaks in the Reynolds stresses showed faster decay than the upwind case due to higher levels of turbulence. This provides a physical explanation for how turbine arrays or wind farms can operate more efficiently under unstable atmospheric conditions, as it is based on measurements collected in the field.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Numerical Investigations of Wind Turbine Wakes under Neutral and Convective Atmospheric Stability Conditions
    Tian, Linlin
    Song, Yilei
    Zhao, Ning
    Wang, Tongguang
    Zhong, Wei
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [2] UNCERTAINTY QUANTIFICATION OF WIND TURBINE WAKES UNDER RANDOM WIND CONDITIONS
    Pereira, Tassia Penha
    Ekwaro-Osire, Stephen
    Dias, Joao Paulo
    Ward, Nicholas J.
    Cunha, Americo, Jr.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 13, 2020,
  • [3] Modelling sound propagation from a wind turbine under various atmospheric conditions
    Heimann, Dietrich
    METEOROLOGISCHE ZEITSCHRIFT, 2018, 27 (04) : 265 - 275
  • [4] Influence of atmospheric stability on wind turbine wakes
    Magnusson, Mikael
    Smedman, Ann-Sofi
    Wind Engineering, 1994, 18 (03): : 139 - 152
  • [5] A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions
    Xie, Shengbai
    Archer, Cristina L.
    BOUNDARY-LAYER METEOROLOGY, 2017, 165 (01) : 87 - 112
  • [6] A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions
    Shengbai Xie
    Cristina L. Archer
    Boundary-Layer Meteorology, 2017, 165 : 87 - 112
  • [7] UNDERSTANDING THE INFLUENCE OF TURBINE GEOMETRY AND ATMOSPHERIC TURBULENCE ON WIND TURBINE WAKES
    Gu, Ping
    Kuo, Jim Y. J.
    Romero, David A.
    Amon, Cristina H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,
  • [8] Monin-Obukhov Similarity Theory for Modeling of Wind Turbine Wakes under Atmospheric Stable Conditions: Breakdown and Modifications
    Han, Xingxing
    Liu, Deyou
    Xu, Chang
    Shen, Wenzhong
    Li, Linmin
    Xue, Feifei
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [9] Measurements of the wind turbine wake parameters with a pulsed coherent lidar under various atmospheric conditions
    Smalikho, I. N.
    Pitchugina, Y. L.
    Banakh, V. A.
    Brewer, W. A.
    RUSSIAN PHYSICS JOURNAL, 2013, 55 (08) : 956 - 960
  • [10] A new method for simulating multiple wind turbine wakes under yawed conditions
    Wei, Dezhi
    Zhao, Weiwen
    Wan, Decheng
    Xiao, Qing
    OCEAN ENGINEERING, 2021, 239