Roadside Traffic Sign Detection Based on Faster R-CNN

被引:2
|
作者
Fu, Xingyu [1 ]
Fang, Bin [1 ]
Qian, Jiye [2 ]
Wu, Zhenni [1 ]
Zhu, Jiajie [1 ]
Du, Tongxin [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
[2] State Grid Chongqing Elect Power Co, Elect Power Res Inst Chongqing, Chongqing 401123, Peoples R China
来源
ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING | 2019年
基金
中国国家自然科学基金;
关键词
Traffic sign detection; subcategory detection; faster R-CNN;
D O I
10.1145/3318299.3318348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\%, the recall rate is 100%, and the precision rate is 94.40\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 50 条
  • [21] Real Time Bangladeshi Sign Language Detection using Faster R-CNN
    Hoque, Oishee Bintey
    Jubair, Mohammad Imrul
    Islam, Md. Saiful
    Akash, Al-Farabi
    Paulson, Alvin Sachie
    2018 INTERNATIONAL CONFERENCE ON INNOVATION IN ENGINEERING AND TECHNOLOGY (ICIET), 2018,
  • [22] Face Detection With Different Scales Based on Faster R-CNN
    Wu, Wenqi
    Yin, Yingjie
    Wang, Xingang
    Xu, De
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) : 4017 - 4028
  • [23] Inshore ship detection based on improved Faster R-CNN
    Tan, Xiangyu
    Tian, Tian
    Li, Hang
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [24] Gas mask wearing detection based on Faster R-CNN
    Wang, Bangrong
    Wang, Jun
    Xu, Xiaofeng
    Bao, Xianglin
    JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 2023, 16 (01) : 57 - 71
  • [25] Improvement of Object Detection Based on Faster R-CNN and YOLO
    Fan, Jiayi
    Lee, JangHyeon
    Jung, InSu
    Lee, YongKeun
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [26] Vehicle Detection Based on an Imporved Faster R-CNN Method
    Lyu, Wentao
    Lin, Qiqi
    Guo, Lipeng
    Wang, Chengqun
    Yang, Zhenyi
    Xu, Weiqiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (02) : 587 - 590
  • [27] Cigarette Detection Algorithm Based on Improved Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    He, Yue
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2766 - 2770
  • [28] Fruit target detection method based on faster R-CNN
    Yin G.
    Xie Y.
    Yun J.
    Ning L.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2021, 21 (03): : 207 - 213
  • [29] Intelligent Detection of Parcels Based on Improved Faster R-CNN
    Zhao, Ke
    Wang, Yaonan
    Zhu, Qing
    Zuo, Yi
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [30] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123