Roadside Traffic Sign Detection Based on Faster R-CNN

被引:2
|
作者
Fu, Xingyu [1 ]
Fang, Bin [1 ]
Qian, Jiye [2 ]
Wu, Zhenni [1 ]
Zhu, Jiajie [1 ]
Du, Tongxin [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
[2] State Grid Chongqing Elect Power Co, Elect Power Res Inst Chongqing, Chongqing 401123, Peoples R China
来源
ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING | 2019年
基金
中国国家自然科学基金;
关键词
Traffic sign detection; subcategory detection; faster R-CNN;
D O I
10.1145/3318299.3318348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\%, the recall rate is 100%, and the precision rate is 94.40\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 50 条
  • [1] Improved Traffic Sign Detection Algorithm Based on Faster R-CNN
    Gao, Xiang
    Chen, Long
    Wang, Kuan
    Xiong, Xiaoxia
    Wang, Hai
    Li, Yicheng
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [2] Traffic sign detection algorithm based on improved Faster R-CNN
    Li Zhe
    Zhang Hui-hui
    Deng Jun-yong
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (03) : 484 - 492
  • [3] Faster R-CNN for Small Traffic Sign Detection
    Zhang, Zhuo
    Zhou, Xiaolong
    Chan, Sixian
    Chen, Shengyong
    Liu, Honghai
    COMPUTER VISION, PT III, 2017, 773 : 155 - 165
  • [4] Traffic sign detection based on improved faster R-CNN for autonomous driving
    Li, Xiaomei
    Xie, Zhijiang
    Deng, Xiong
    Wu, Yanxue
    Pi, Yangjun
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06) : 7982 - 8002
  • [5] Traffic sign detection based on improved faster R-CNN for autonomous driving
    Xiaomei Li
    Zhijiang Xie
    Xiong Deng
    Yanxue Wu
    Yangjun Pi
    The Journal of Supercomputing, 2022, 78 : 7982 - 8002
  • [6] Traffic Sign Detection Based on Improved Faster R-CNN Model
    Zhang Yi
    Gong Zhiyuan
    Wei Wenwen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [7] LOCO: Local Context Based Faster R-CNN for Small Traffic Sign Detection
    Cheng, Peng
    Liu, Wu
    Zhang, Yifan
    Ma, Huadong
    MULTIMEDIA MODELING, MMM 2018, PT I, 2018, 10704 : 329 - 341
  • [8] Pedestrian Detection based on Faster R-CNN
    Liu S.
    Cui X.
    Li J.
    Yang H.
    Lukač N.
    International Journal of Performability Engineering, 2019, 15 (07) : 1792 - 1801
  • [9] Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
    Xu, Xiangyang
    Zhao, Mian
    Shi, Peixin
    Ren, Ruiqi
    He, Xuhui
    Wei, Xiaojun
    Yang, Hao
    SENSORS, 2022, 22 (03)
  • [10] A Traffic-Sign Detection Algorithm Based on Improved Sparse R-cnn
    Cao, Jinghao
    Zhang, Junju
    Jin, Xin
    IEEE ACCESS, 2021, 9 : 122774 - 122788