Free viewpoint action recognition using motion history volumes

被引:564
作者
Weinland, Daniel [1 ]
Ronfard, Remi [1 ]
Boyer, Edmond [1 ]
机构
[1] INRIA Rhone Alpes, Percept GRAVIR, F-38334 Montbonnot St Martin, France
关键词
action recognition; view invariance; volumetric reconstruction;
D O I
10.1016/j.cviu.2006.07.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Action recognition is an important and challenging topic in computer vision, with many important applications including video surveillance, automated cinematography and understanding of social interaction. Yet, most current work in gesture or action interpretation remains rooted in view-dependent representations. This paper introduces Motion History Volumes (MHV) as a free-viewpoint representation for human actions in the case of multiple calibrated, and background-subtracted, video cameras. We present algorithms for computing, aligning and comparing MHVs of different actions performed by different people in a variety of viewpoints. Alignment and comparisons are performed efficiently using Fourier transforms in cylindrical coordinates around the vertical axis. Results indicate that this representation can be used to learn and recognize basic human action classes, independently of gender, body size and viewpoint. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [21] Action recognition is viewpoint-dependent in the visual periphery
    Fademrecht, Laura
    Buelthoff, Isabelle
    de la Rosa, Stephan
    VISION RESEARCH, 2017, 135 : 10 - 15
  • [22] ACTION RECOGNITION USING INTEREST POINTS CAPTURING DIFFERENTIAL MOTION INFORMATION
    Yadav, Gaurav Kumar
    Shukla, Prakhar
    Sethi, Amit
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1881 - 1885
  • [23] Action Recognition Using Stationary Wavelet-Based Motion Images
    Al-Berry, M. N.
    Salem, M. A. -M.
    Ebeid, H. M.
    Hussein, Ashraf S.
    Tolba, Mohamed F.
    INTELLIGENT SYSTEMS'2014, VOL 2: TOOLS, ARCHITECTURES, SYSTEMS, APPLICATIONS, 2015, 323 : 743 - 753
  • [24] Human Action Recognition Using HDP by Integrating Motion and Location Information
    Ariki, Yasuo
    Tonaru, Takuya
    Takiguchi, Tetsuya
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 291 - +
  • [25] Interactive human pose and action recognition using dynamical motion primitives
    Jenkins, Odest Chadwicke
    Serrano, German Gonzalez
    Loper, Matthew M.
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2007, 4 (02) : 365 - 385
  • [26] Criminal action recognition using spatiotemporal human motion acceleration descriptor
    Mir, Abinta Mehmood
    Yousaf, Muhammad Haroon
    Dawood, Hassan
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (06)
  • [27] Multi-view Human Action Recognition using Histograms of Oriented Gradients (HOG) Description of Motion History Images (MHIs)
    Murtaza, Fiza
    Yousaf, Muhammad Haroon
    Velastin, Sergio A.
    2015 13TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2015, : 297 - 302
  • [28] Motion Feature Network: Fixed Motion Filter for Action Recognition
    Lee, Myunggi
    Lee, Seungeui
    Son, Sungjoon
    Park, Gyutae
    Kwak, Nojun
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 392 - 408
  • [29] Action recognition on motion capture data using a dynemes and forward differences representation
    Kapsouras, Ioannis
    Nikolaidis, Nikos
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (06) : 1432 - 1445
  • [30] Natural Action Recognition Using Invariant 3D Motion Encoding
    Hadfield, Simon
    Lebeda, Karel
    Bowden, Richard
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 758 - 771