Emergence of stationary many-body entanglement in driven-dissipative Rydberg lattice gases

被引:12
作者
Lee, Sun Kyung [1 ,2 ]
Cho, Jaeyoon [3 ]
Choi, K. S. [4 ,5 ,6 ,7 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[7] Korea Inst Sci & Technol, Ctr Quantum Informat, Seoul 136791, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
quantum-reservoir engineering; quantum many-body physics; steady-state entanglement; non-equilibrium quantum dynamics; Rydberg atoms; quantum information science; quantum optics; QUANTUM INFORMATION; ATOMS; COMPUTATION; LIGHT; STATE;
D O I
10.1088/1367-2630/17/11/113053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-equilibrium quantum dynamics represents an emerging paradigm for condensed matter physics, quantum information science, and statistical mechanics. Strongly interacting Rydberg atoms offer an attractive platform to examine driven-dissipative dynamics of quantum spin models with long-range order. Here, we explore the conditions under which stationary many-body entanglement persists with near-unit fidelity and high scalability. In our approach, coherent many-body dynamics is driven by Rydberg-mediated laser transitions, while atoms at the lattice boundary locally reduce the entropy of the many-body system. Surprisingly, the many-body entanglement is established by continuously evolving a locally dissipative Rydberg system towards the steady state, precisely as with optical pumping. We characterize the dynamics of multipartite entanglement in an one-dimensional lattice by way of quantum uncertainty relations, and demonstrate the long-range behavior of the stationary entanglement with finite-size scaling. Our work opens a route towards dissipative preparation of many-body entanglement with unprecedented scaling behavior.
引用
收藏
页数:19
相关论文
共 71 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   Dissipative Binding of Lattice Bosons through Distance-Selective Pair Loss [J].
Ates, C. ;
Olmos, B. ;
Li, W. ;
Lesanovsky, I. .
PHYSICAL REVIEW LETTERS, 2012, 109 (23)
[3]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[4]   Coupling a single electron to a Bose-Einstein condensate [J].
Balewski, Jonathan B. ;
Krupp, Alexander T. ;
Gaj, Anita ;
Peter, David ;
Buechler, Hans Peter ;
Loew, Robert ;
Hofferberth, Sebastian ;
Pfau, Tilman .
NATURE, 2013, 502 (7473) :664-667
[5]   Demonstration of a Strong Rydberg Blockade in Three-Atom Systems with Anisotropic Interactions [J].
Barredo, D. ;
Ravets, S. ;
Labuhn, H. ;
Beguin, L. ;
Vernier, A. ;
Nogrette, F. ;
Lahaye, T. ;
Browaeys, A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (18)
[6]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[7]   Creation of entanglement by interaction with a common heat bath [J].
Braun, D .
PHYSICAL REVIEW LETTERS, 2002, 89 (27) :277901-277901
[8]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791
[9]   Preparation of Entangled and Antiferromagnetic States by Dissipative Rydberg Pumping [J].
Carr, A. W. ;
Saffman, M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[10]   Universal Computation by Multiparticle Quantum Walk [J].
Childs, Andrew M. ;
Gosset, David ;
Webb, Zak .
SCIENCE, 2013, 339 (6121) :791-794