A Variational Inference Approach to Inverse Problems with Gamma Hyperpriors

被引:4
作者
Agrawal, Shiv [1 ]
Kim, Hwanwoo [2 ]
Sanz-Alonso, Daniel [1 ]
Strang, Alexander [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Chicago, Comm Computat & Appl Math, Chicago, IL 60637 USA
关键词
variational inference; hierarchical inverse problems; iterative alternating scheme; sparse estimation; Bayesian shrinkage; REWEIGHTED LEAST-SQUARES;
D O I
10.1137/21M146209X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hierarchical models with gamma hyperpriors provide a flexible, sparsity-promoting framework to bridge L1 and L2 regularizations in Bayesian formulations to inverse problems. Despite the Bayesian motivation for these models, existing methodologies are limited to maximum a posteriori estimation. The potential to perform uncertainty quantification has not yet been realized. This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors. The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement. In addition, it lends itself naturally to conduct model selection for the choice of hyperparameters. We illustrate the performance of our methodology in several computed examples, including a deconvolution problem and sparse identification of dynamical systems from time series data.
引用
收藏
页码:1533 / 1559
页数:27
相关论文
共 52 条
[1]   Importance Sampling: Intrinsic Dimension and Computational Cost [J].
Agapiou, S. ;
Papaspiliopoulos, O. ;
Sanz-Alonso, D. ;
Stuart, A. M. .
STATISTICAL SCIENCE, 2017, 32 (03) :405-431
[2]   Analysis of the Gibbs Sampler for Hierarchical Inverse Problems [J].
Agapiou, Sergios ;
Bardsley, Johnathan M. ;
Papaspiliopoulos, Omiros ;
Stuart, Andrew M. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01) :511-544
[3]  
[Anonymous], 2001, P 17 C UNC ART INT
[4]  
[Anonymous], 2008, MONTE CARLO STRATEGI
[5]  
Armagan A., 2009, Artificial Intelligence and Statistics, P17
[6]   Solving inverse problems using data-driven models [J].
Arridge, Simon ;
Maass, Peter ;
Oktem, Ozan ;
Schonlieb, Carola-Bibiane .
ACTA NUMERICA, 2019, 28 :1-174
[7]  
Barber D, 1999, ADV NEUR IN, V11, P183
[8]  
Bard J. F., 2013, Nonconvex Optim. Appl., V30
[9]   LOCAL CONVERGENCE ANALYSIS OF A GROUPED VARIABLE VERSION OF COORDINATE DESCENT [J].
BEZDEK, JC ;
HATHAWAY, RJ ;
HOWARD, RE ;
WILSON, CA ;
WINDHAM, MP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 54 (03) :471-477
[10]  
Bishop C.M., 2006, PATTERN RECOGNITION, DOI [DOI 10.18637/JSS.V017.B05, 10.1117/1.2819119]