Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles

被引:38
作者
Chu, Andrew [1 ]
Allam, Anirudh [2 ]
Arenas, Andrea Cordoba [3 ,4 ]
Rizzoni, Giorgio [3 ,4 ]
Onori, Simona [2 ]
机构
[1] Nueva Sch, San Mateo, CA 94403 USA
[2] Stanford Univ, Energy Resources Engn Dept, Stanford, CA 94305 USA
[3] Ohio State Univ, Ctr Automot Res, Columbus, OH 43212 USA
[4] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43212 USA
关键词
Lithium-ion battery; Capacity estimation; Remaining useful life prediction; State of charge; Resistance estimation; Particle filter; Electrified vehicles; PARTICLE FILTER; HEALTH; CELLS; FADE; PROGNOSTICS; RECOVERY; STATE;
D O I
10.1016/j.jpowsour.2020.228991
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper proposes and validates a stochastic prognostic model for capacity loss and remaining useful life (RUL) in lithium-ion pouch cells with graphite anodes and NMC-LMO cathodes. The model was developed using data from an experimental campaign which studied the effect of C-rate, minimum SOC, temperature, and charge-depleting usage on aging in plug-in hybrid electric vehicle (PHEV) batteries. The proposed algorithm estimates capacity loss and RUL as a function of resistance and operating conditions including charge sustaining/depleting use and temperature, and its stochastic nature is able to capture the variability of the data. The battery resistance is estimated using a particle filter developed for an experimentally validated equivalent circuit battery model. The particle filter is designed to perform combined estimation of State of Charge and internal resistance, which is used as an input to the stochastic capacity loss model. Finally, the stochastic model predicts the capacity loss with a root mean square error (RMSE) of less than 1% and RUL with an RMSE of 1.6 kAh, and can be integrated into on-board battery management systems in PHEV to monitor the health of lithium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [12] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [13] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [14] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [15] Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model
    Zhou, Yapeng
    Huang, Miaohua
    MICROELECTRONICS RELIABILITY, 2016, 65 : 265 - 273
  • [16] Estimating remaining useful life for lithium-ion batteries using kalman filter banks
    Bian, Yiming
    Li, Ning
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [17] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm
    Sun, Chuang
    Qu, An
    Zhang, Jun
    Shi, Qiyang
    Jia, Zhenhong
    ENERGIES, 2023, 16 (01)
  • [18] Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life prediction of lithium-ion batteries
    Nguyen, Cong Dai
    Bae, Suk Joo
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [19] Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
    Zhang, YongZhi
    Xiong, Rui
    He, HongWen
    Pecht, Michael
    JOURNAL OF CLEANER PRODUCTION, 2019, 212 : 240 - 249
  • [20] An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2016, 305 : 80 - 88