Adaptive fitting with THB-splines: Error analysis and industrial applications

被引:17
作者
Bracco, Cesare [1 ]
Giannelli, Carlotta [1 ]
Grossmann, David [2 ]
Sestini, Alessandra [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Florence, Italy
[2] MTU Aero Engines AG, Munich, Germany
关键词
Scattered data fitting; Hierarchical splines; THB-splines; Local least squares; Quasi-interpolation; Turbine blades; HIERARCHICAL SPLINES; POLYNOMIAL SPLINES; BIVARIATE SPLINES; LOCAL REFINEMENT; T-MESHES; APPROXIMATION; SPACES; EXTENSION;
D O I
10.1016/j.cagd.2018.03.026
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automatic fitting techniques are required in many industrial applications, as for example, instrument calibration, data analysis, geometric modeling or reverse engineering. We present an error analysis of advanced techniques for scattered data approximation based on truncated hierarchical B-spline (THB-spline) constructions. The adaptive fitting framework is validated on data of industrial complexity related to geometric models of different aircraft engine parts. We demonstrate that the twofold adaptive nature of the method, which takes into account both the shape and the distribution of the data, is crucial to define an effective fully automatic scheme with suitable local refinement capabilities. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:239 / 252
页数:14
相关论文
共 30 条
[1]  
Bracco Cesare, 2017, Mathematical Methods for Curves and Surfaces. 9th International Conference, MMCS 2016. Revised Selected Papers: LNCS 10521, P23, DOI 10.1007/978-3-319-67885-6_2
[2]   Adaptive scattered data fitting by extension of local approximations to hierarchical splines [J].
Bracco, Cesare ;
Giannelli, Carlotta ;
Sestini, Alessandra .
COMPUTER AIDED GEOMETRIC DESIGN, 2017, 52-53 :90-105
[3]   Bivariate hierarchical Hermite spline quasi-interpolation [J].
Bracco, Cesare ;
Giannelli, Carlotta ;
Mazzia, Francesca ;
Sestini, Alessandra .
BIT NUMERICAL MATHEMATICS, 2016, 56 (04) :1165-1188
[4]   Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence [J].
Buffa, Annalisa ;
Giannelli, Carlotta .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01) :1-25
[5]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[6]  
Davydov O, 2014, MATH COMPUT, V83, P809
[7]   Scattered data fitting by direct extension of local polynomials to bivariate splines [J].
Davydov, O ;
Zeilfelder, F .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) :223-271
[8]  
DAVYDOV O, 2005, TRENDS APPL CONSTRUC, V151, P91
[9]   Local hybrid approximation for scattered data fitting with bivariate splines [J].
Davydov, Oleg ;
Morandi, Rossana ;
Sestini, Alessandra .
COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (09) :703-721
[10]   Polynomial splines over hierarchical T-meshes [J].
Deng, Jiansong ;
Chen, Falai ;
Li, Xin ;
Hu, Changqi ;
Tong, Weihua ;
Yang, Zhouwang ;
Feng, Yuyu .
GRAPHICAL MODELS, 2008, 70 (76-86) :76-86