Anode shape dependency of discharge characteristics and neutron yield of a linear type inertial electrostatic confinement fusion neutron source

被引:0
作者
Itagaki, Tomonobu [1 ]
Hotta, Eiki [1 ]
Hasegawa, Jun [1 ]
Takakura, Kei [1 ]
Tabata, Shinnosuke [1 ]
Matsueda, Yasushi [1 ]
机构
[1] Tokyo Inst Technol, Lab Adv Nucl Energy, Inst Innovat Res, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528550, Japan
关键词
glow discharge; Inertial electrostatic confinement fusion; neutron source; CROSS-SECTIONS; PROPULSION; SYSTEM; COLLISIONS; PROBE; POWER;
D O I
10.1002/ecj.12293
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A linear inertial electrostatic confinement fusion neutron source equipped with a cooling system for high power operation was developed and its discharge characteristics and neutron production performance were tested under a wide range of discharge conditions. Four different types of discharge anodes were prepared and the dependencies of the device performance on the anode shape were precisely investigated. A maximum neutron production rate of 3.4x10(6) n/s was achieved when the device was operated with single-cylinder-type anodes under a discharge voltage of 94 kV, a current of 20 mA, and a deuterium gas pressure of 0.5 Pa. By comparing the discharge characteristics and neutron generation rates under different anode shapes, we found that the larger inner diameter of the anode leads to longer effective gap length and lower operating pressure, which may result in relatively high fusion reaction rate observed with the single-cylinder-type anodes.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 26 条
[1]  
Froning HD, 2005, AIP CONF PROC, V746, P1339
[2]   BIASED PROBE FOR PLASMA DIAGNOSTICS IN SPHERICAL ELECTROSTATIC INERTIAL PLASMA-CONFINEMENT [J].
GU, YB ;
MILEY, GH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (10) :2902-2904
[3]  
Hammond WE, 2000, AIP CONF PROC, V504, P1572
[4]  
Hayashi I, 1987, PLASMA ENG, P19
[5]  
Ito R, 1996, ANAL CROSS SECTIONS
[6]   NEAR TERM APPLICATIONS OF INERTIAL ELECTROSTATIC CONFINEMENT FUSION RESEARCH [J].
Kulcinski, G. L. ;
Santarius, J. F. ;
Emmert, G. A. ;
Bonomo, R. L. ;
Alderson, E. C. ;
Becerra, G. E. ;
Boris, D. R. ;
Donovan, D. C. ;
Egle, B. J. ;
Sorebo, J. H. ;
Zenobia, S. J. .
FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (01) :493-500
[7]   New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis [J].
Marchese, N. ;
Cannuli, A. ;
Caccamo, M. T. ;
Pace, C. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2017, 1861 (01) :3661-3670
[8]   THE INTERNATIONAL DAWSON SYMPOSIUM - COMMENTS [J].
MILEY, G .
FUSION TECHNOLOGY, 1991, 19 (03) :407-408
[9]  
Miley G., 1974, Fusion cross section and reactivities
[10]   Cylindrical IEC Fusion Neutron Source for Broad Area NAA [J].
Miley, George H. ;
Momota, Hiromu ;
Leon, Hugo ;
Ulmen, Ben ;
Amadio, Guilherme ;
Khan, Atanu ;
Chen, George ;
Matisiak, William ;
Azeem, Ali ;
Keutelian, Paul .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2011, 133 (12)