Generalized Mehler semigroups:: The non-Gaussian case

被引:53
作者
Fuhrman, M
Röckner, M
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
Markovian semigroups; Mehler formula; cadlag processes in abstract spaces; tightness of capacities;
D O I
10.1023/A:1008644017078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study generalized Mehler semigroups, introduced in [7], with special emphasis on the non-Gaussian case. We review and simplify the method of construction. In the general (non-Gaussian) case we construct an associated cadlag Markov process in an appropriate state space obtained as a solution of a stochastic equation which can be solved 'omega by omega'. We also show tightness of the associated (r, p)-capacities. Invariant measures, time regularity and a definition of the generator are also studied.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 40 条
[1]   AN INVARIANCE RESULT FOR CAPACITIES ON WIENER SPACE [J].
ALBEVERIO, S ;
FUKUSHIMA, M ;
HANSEN, W ;
MA, ZM ;
ROCKNER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 106 (01) :35-49
[2]   CLASSICAL DIRICHLET FORMS ON TOPOLOGICAL VECTOR-SPACES - THE CONSTRUCTION OF THE ASSOCIATED DIFFUSION PROCESS [J].
ALBEVERIO, S ;
ROCKNER, M .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (03) :405-434
[3]  
BAUER H, 1978, WAHRSCHEINLICHKEITST
[4]  
BERG C, 1975, ERGEBNISSE MATH IHRE, V87
[5]  
Bogachev VI, 1996, PROBAB THEORY REL, V105, P193
[6]  
Bogachev VI, 1995, OSAKA J MATH, V32, P237
[7]  
BOGACHEV VI, 1995, 95093 SFB U BIEL
[8]  
BOULEAU N, 1990, J MATH PURE APPL, V69, P95
[9]  
BOULEAU N, 1990, LNM, V1444, P128
[10]   A HILLE-YOSIDA THEOREM FOR WEAKLY CONTINUOUS SEMIGROUPS [J].
CERRAI, S .
SEMIGROUP FORUM, 1994, 49 (03) :349-367