Some Existence Theorems on All Fractional (g, f)-factors with Prescribed Properties

被引:19
作者
Zhou, Si-zhong [1 ]
Zhang, Tao [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; fractional; (g; f)-factor; all fractional (g; f)-factors; SUFFICIENT CONDITION; K)-CRITICAL GRAPHS; (G; F)-FACTORS; (A; NUMBER;
D O I
10.1007/s10255-018-0753-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph, and g, f: V (G) -> Z (+) with g(x) ae f(x) for each x a V (G). We say that G admits all fractional (g, f)-factors if G contains an fractional r-factor for every r: V (G) -> Z (+) with g(x) ae r(x) ae f(x) for any x a V (G). Let H be a subgraph of G. We say that G has all fractional (g, f)-factors excluding H if for every r: V (G) -> Z (+) with g(x) ae r(x) ae f(x) for all x a V (G), G has a fractional r-factor F (h) such that E(H) a (c) E(F (h) ) = theta, where h: E(G) -> [0, 1] is a function. In this paper, we show a characterization for the existence of all fractional (g, f)-factors excluding H and obtain two sufficient conditions for a graph to have all fractional (g, f)-factors excluding H.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 19 条
[1]   SIMPLIFIED EXISTENCE THEOREMS FOR (G,F)-FACTORS [J].
ANSTEE, RP .
DISCRETE APPLIED MATHEMATICS, 1990, 27 (1-2) :29-38
[2]   On 2-factors with a bounded number of odd components [J].
Diemunsch, Jennifer ;
Ferrara, Michael ;
Graffeo, Samantha ;
Morris, Timothy .
DISCRETE MATHEMATICS, 2014, 323 :35-42
[3]   Complete-factors and f-factors [J].
Enomoto, H ;
Tokuda, T .
DISCRETE MATHEMATICS, 2000, 220 (1-3) :239-242
[4]   TIGHT TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n)-CRITICAL GRAPHS [J].
Gao, Wei ;
Liang, Li ;
Xu, Tianwei ;
Zhou, Juxiang .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) :55-65
[5]   Regular factors and eigenvalues of regular graphs [J].
Gu, Xiaofeng .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 42 :15-25
[6]  
Kotani K., 2010, Proceedings of the Japan Academy, Seires A, V86, P85
[7]   Sufficient Condition for the Existence of an Even [a, b]-Factor in Graph [J].
Kouider, Mekkia ;
Ouatiki, Saliha .
GRAPHS AND COMBINATORICS, 2013, 29 (04) :1051-1057
[8]   Fractional (g, f)-factors of graphs [J].
Liu, GZ ;
Zhang, LJ .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) :541-545
[9]  
Lovasz L., 1970, Journal of Combinatorial Theory, V8, P391
[10]   Simplified existence theorems on all fractional [a, b]-factors [J].
Lu, Hongliang .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :2075-2078