Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities

被引:130
作者
Yu, Fei [1 ,2 ,4 ]
Zhu, Li Qiang [1 ,4 ]
Gao, Wan Tian [1 ,3 ,4 ]
Fu, Yang Ming [1 ,4 ]
Xiao, Hui [1 ,4 ]
Tao, Jian [1 ,4 ]
Zhou, Ju Mei [5 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Graphene Technol & Applicat Zhejiang Prov, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
electrical double layer; flexible device; artificial synapse; spike-timing-dependent plasticity (STDP); learning abilities; TIMING-DEPENDENT PLASTICITY; ARTIFICIAL SYNAPSES; MEMORY; ELECTRODES; MEMRISTOR; NETWORKS; NEURONS; DEVICE; FILM;
D O I
10.1021/acsami.8b03274
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, environment-friendly electronic devices are attracting increasing interest. "Green" artificial synapses with learning abilities are also interesting for neuromorphic platforms. Here, solution-processed chitosan-based polysaccharide electrolyte-gated indium tin oxide (ITO) synaptic transistors are fabricated on polyethylene terephthalate substrate. Good transistor performances against mechanical stress are observed. Short-term synaptic plasticities are mimicked on the proposed ITO synaptic transistor. When applying presynaptic and postsynaptic spikes on gate electrode and drain electrode respectively, spike-timing-dependent plasticity function is mimicked on the synaptic transistor. Transitions from sensory memory to short-term memory (STM) and from STM to long-term memory are also mimicked, demonstrating a "multistore model" brain memory. Furthermore, the flexible ITO synaptic transistor can be dissolved in deionized water easily, indicating potential green neuromorphic platform applications.
引用
收藏
页码:16881 / 16886
页数:6
相关论文
共 50 条
  • [1] An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse
    Alibart, Fabien
    Pleutin, Stephane
    Guerin, David
    Novembre, Christophe
    Lenfant, Stephane
    Lmimouni, Kamal
    Gamrat, Christian
    Vuillaume, Dominique
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) : 330 - 337
  • [2] Atkinson R.C., 1977, PSYCHOL LEARNING MOT, P7, DOI [10.1016/B978-0-12-121050-2.50006-5, DOI 10.1016/S0079-7421(08)60422-3, 10.1016/S0079-7421(08)60422-3]
  • [3] CAN PROGRAMMING BE LIBERATED FROM VON NEUMANN STYLE - FUNCTIONAL STYLE AND ITS ALGEBRA OF PROGRAMS
    BACKUS, J
    [J]. COMMUNICATIONS OF THE ACM, 1978, 21 (08) : 613 - 641
  • [4] Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    Bi, GQ
    Poo, MM
    [J]. JOURNAL OF NEUROSCIENCE, 1998, 18 (24) : 10464 - 10472
  • [5] Learning through ferroelectric domain dynamics in solid-state synapses
    Boyn, Soeren
    Grollier, Julie
    Lecerf, Gwendal
    Xu, Bin
    Locatelli, Nicolas
    Fusil, Stephane
    Girod, Stephanie
    Carretero, Cecile
    Garcia, Karin
    Xavier, Stephane
    Tomas, Jean
    Bellaiche, Laurent
    Bibes, Manuel
    Barthelemy, Agnes
    Saighi, Sylvain
    Garcia, Vincent
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [6] Spike timing-dependent plasticity: A Hebbian learning rule
    Caporale, Natalia
    Dan, Yang
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 : 25 - 46
  • [7] Ferroelectric-Like Charge Trapping Thin-Film Transistors and Their Evaluation as Memories and Synaptic Devices
    Daus, Alwin
    Lenarczyk, Pawel
    Petti, Luisa
    Munzenrieder, Niko
    Knobelspies, Stefan
    Cantarella, Giuseppe
    Vogt, Christian
    Salvatore, Giovanni A.
    Luisier, Mathieu
    Troster, Gerhard
    [J]. ADVANCED ELECTRONIC MATERIALS, 2017, 3 (12):
  • [8] The Spike-Timing Dependence of Plasticity
    Feldman, Daniel E.
    [J]. NEURON, 2012, 75 (04) : 556 - 571
  • [9] Feng P., 2016, SCI REP
  • [10] Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems
    Gao, Bin
    Bi, Yingjie
    Chen, Hong-Yu
    Liu, Rui
    Huang, Peng
    Chen, Bing
    Liu, Lifeng
    Liu, Xiaoyan
    Yu, Shimeng
    Wong, H. -S. Philip
    Kang, Jinfeng
    [J]. ACS NANO, 2014, 8 (07) : 6998 - 7004