Facet development during platinum nanocube growth

被引:418
作者
Liao, Hong-Gang [1 ]
Zherebetskyy, Danylo [1 ]
Xin, Huolin [1 ]
Czarnik, Cory [2 ]
Ercius, Peter [3 ]
Elmlund, Hans [4 ]
Pan, Ming [2 ]
Wang, Lin-Wang [1 ]
Zheng, Haimei [1 ,5 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Gatan Inc, Pleasanton, CA 94588 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA
[5] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
ELECTRON-MICROSCOPY; GOLD NANOPARTICLES; NANOCRYSTALS; LIQUID; SHAPE; CHEMISTRY;
D O I
10.1126/science.1253149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An understanding of how facets of a nanocrystal develop is critical for controlling nanocrystal shape and designing novel functional materials. However, the atomic pathways of nanocrystal facet development are mostly unknown because of the lack of direct observation. We report the imaging of platinum nanocube growth in a liquid cell using transmission electron microscopy with high spatial and temporal resolution. The growth rates of all low index facets are similar until the {100} facets stop growth. The continuous growth of the rest facets leads to a nanocube. Our calculation shows that the much lower ligand mobility on the {100} facets is responsible for the arresting of {100} growing facets. These findings shed light on nanocrystal shape-control mechanisms and future design of nanomaterials.
引用
收藏
页码:916 / 919
页数:4
相关论文
共 21 条
  • [1] Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions
    Bealing, Clive R.
    Baumgardner, William J.
    Choi, Joshua J.
    Hanrath, Tobias
    Hennig, Richard G.
    [J]. ACS NANO, 2012, 6 (03) : 2118 - 2127
  • [2] From Single Atoms to Nanocrystals: Photoreduction of [PtCl6]2- in Aqueous and Tetrahydrofuran Solutions of PVP
    Borodko, Yuri
    Ercius, Peter
    Zherebetskyy, Danylo
    Wang, Yihai
    Sun, Yintao
    Somorjai, Gabor
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (50) : 26667 - 26674
  • [3] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [4] Chemistry and properties of nanocrystals of different shapes
    Burda, C
    Chen, XB
    Narayanan, R
    El-Sayed, MA
    [J]. CHEMICAL REVIEWS, 2005, 105 (04) : 1025 - 1102
  • [5] Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
    Daniel, MC
    Astruc, D
    [J]. CHEMICAL REVIEWS, 2004, 104 (01) : 293 - 346
  • [6] de Jonge N, 2011, NAT NANOTECHNOL, V6, P695, DOI [10.1038/NNANO.2011.161, 10.1038/nnano.2011.161]
  • [7] Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles
    Elghanian, R
    Storhoff, JJ
    Mucic, RC
    Letsinger, RL
    Mirkin, CA
    [J]. SCIENCE, 1997, 277 (5329) : 1078 - 1081
  • [8] Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy
    Evans, James E.
    Jungjohann, Katherine L.
    Browning, Nigel D.
    Arslan, Ilke
    [J]. NANO LETTERS, 2011, 11 (07) : 2809 - 2813
  • [9] Gibbs JW., 1902, The collected works of J. Willard Gibbs
  • [10] Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals
    Hansen, PL
    Wagner, JB
    Helveg, S
    Rostrup-Nielsen, JR
    Clausen, BS
    Topsoe, H
    [J]. SCIENCE, 2002, 295 (5562) : 2053 - 2055