A DYNAMIC MULTILAYER SHALLOW WATER MODEL FOR POLYDISPERSE SEDIMENTATION

被引:8
作者
Burger, Raimund [1 ,2 ]
Fernandez-Nieto, Enrique D. [3 ]
Osores, Victor [1 ,2 ]
机构
[1] Univ Concepcion, CI2 MA, Fac Ciencias Fis & Matemat, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Casilla 160-C, Concepcion, Chile
[3] Univ Seville, Dept Matemat Aplicada 1, ETS Arquitectura, Avda Reina Mercedes 2, E-41012 Seville, Spain
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 04期
关键词
Multilayer shallow water model; polydisperse sedimentation; path-conservative method; viscous flow; recirculation; NONCONSERVATIVE HYPERBOLIC SYSTEMS; FINITE-VOLUME SOLVERS; SECULAR EQUATION; DERIVATION; CURRENTS; SCHEMES;
D O I
10.1051/m2an/2019032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multilayer shallow water approach for the approximate description of polydisperse sedimentation in a viscous fluid is presented. The fluid is assumed to carry finely dispersed solid particles that belong to a finite number of species that differ in density and size. These species segregate and form areas of different composition. In addition, the settling of particles influences the motion of the ambient fluid. A distinct feature of the new approach is the particular definition of the average velocity of the mixture. It takes into account the densities of the solid particles and the fluid and allows us to recover the global mass conservation and linear momentum balance laws of the mixture. This definition motivates a modification of the Masliyah-Lockett-Bassoon (MLB) settling velocities of each species. The multilayer shallow water model allows one to determine the spatial distribution of the solid particles, the velocity field, and the evolution of the free surface of the mixture. The final model can be written as a multilayer model with variable density where the unknowns are the average velocities and concentrations in each layer, the transfer terms across each interface, and the total mass. An explicit formula of the transfer terms leads to a reduced form of the system. Finally, an explicit bound of the minimum and maximum eigenvalues of the transport matrix of the system is utilized to design a Harten-Lax-van Leer (HLL)-type path-conservative numerical method. Numerical simulations illustrate the coupled polydisperse sedimentation and flow fields in various scenarios, including sedimentation in a type of basin that is used in practice in mining industry and in a basin whose bottom topography gives rise to recirculations of the fluid and high solids concentrations.
引用
收藏
页码:1391 / 1432
页数:42
相关论文
共 50 条
[21]   On a Shallow Water Model for the Simulation of Turbidity Currents [J].
Morales De Luna, T. ;
Castro Diaz, M. J. ;
Pares Madronal, C. ;
Fernandez Nieto, E. D. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (04) :848-882
[22]   The stability of oceanic fronts in a shallow water model [J].
Chanona, Melanie ;
Poulin, F. J. ;
Yawney, J. .
JOURNAL OF FLUID MECHANICS, 2015, 785 :462-485
[23]   Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation [J].
Buerger, Raimund ;
Mulet, Pep ;
Miguel Villada, Luis .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7) :373-386
[24]   Forcing for a Cascaded Lattice Boltzmann Shallow Water Model [J].
Venturi, Sara ;
Di Francesco, Silvia ;
Geier, Martin ;
Manciola, Piergiorgio .
WATER, 2020, 12 (02)
[25]   TOWARDS A NEW FRICTION MODEL FOR SHALLOW WATER EQUATIONS THROUGH AN INTERACTIVE VISCOUS LAYER [J].
James, Francois ;
Lagree, Pierre-Yves ;
Le, Minh H. ;
Legrand, Mathilde .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01) :269-299
[26]   An Arbitrary High Order Well-Balanced ADER-DG Numerical Scheme for the Multilayer Shallow-Water Model with Variable Density [J].
Guerrero Fernandez, E. ;
Castro Diaz, M. J. ;
Dumbser, M. ;
Morales de Luna, T. .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
[27]   An Arbitrary High Order Well-Balanced ADER-DG Numerical Scheme for the Multilayer Shallow-Water Model with Variable Density [J].
E. Guerrero Fernández ;
M. J. Castro Díaz ;
M. Dumbser ;
T. Morales de Luna .
Journal of Scientific Computing, 2022, 90
[28]   On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation [J].
Boscarino, Sebastiano ;
Buerger, Raimund ;
Mulet, Pep ;
Russo, Giovanni ;
Miguel Villada, Luis .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01) :171-185
[29]   On the spectrum of a rank two modification of a diagonal matrix for linearized fluxes modelling polydisperse sedimentation [J].
Berres, Stefan ;
Voitovich, Tatiana .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 :409-418
[30]   ADAPTIVE MESH REFINEMENT FOR SPECTRAL WENO SCHEMES FOR EFFICIENT SIMULATION OF POLYDISPERSE SEDIMENTATION PROCESSES [J].
Burger, Raimund ;
Mulet, Pep ;
Villada, Luis M. .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 :381-388