Ensemble-Based Cascaded Constrained Energy Minimization for Hyperspectral Target Detection

被引:109
作者
Zhao, Rui [1 ,2 ,3 ]
Shi, Zhenwei [1 ,2 ,3 ]
Zou, Zhengxia [4 ]
Zhang, Zhou [5 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Astronaut, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[5] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA
基金
中国国家自然科学基金; 北京市自然科学基金; 国家重点研发计划;
关键词
hyperspectral image; target detection; constrained energy minimization; cascaded detection; ensemble; multi-scale scanning; IMAGING SPECTROSCOPY; IMAGES;
D O I
10.3390/rs11111310
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ensemble learning is an important group of machine learning techniques that aim to enhance the nonlinearity and generalization ability of a learning system by aggregating multiple learners. We found that ensemble techniques show great potential for improving the performance of traditional hyperspectral target detection algorithms, while at present, there are few previous works have been done on this topic. To this end, we propose an Ensemble based Constrained Energy Minimization (E-CEM) detector for hyperspectral image target detection. Classical hyperspectral image target detection algorithms like Constrained Energy Minimization (CEM), matched filter (MF) and adaptive coherence/cosine estimator (ACE) are usually designed based on constrained least square regression methods or hypothesis testing methods with Gaussian distribution assumption. However, remote sensing hyperspectral data captured in a real-world environment usually shows strong nonlinearity and non-Gaussianity, which will lead to performance degradation of these classical detection algorithms. Although some hierarchical detection models are able to learn strong nonlinear discrimination of spectral data, due to the spectrum changes, these models usually suffer from the instability in detection tasks. The proposed E-CEM is designed based on the classical CEM detection algorithm. To improve both of the detection nonlinearity and generalization ability, the strategies of cascaded detection, random averaging and multi-scale scanning are specifically designed. Experiments on one synthetic hyperspectral image and two real hyperspectral images demonstrate the effectiveness of our method. E-CEM outperforms the traditional CEM detector and other state-of-the-art detection algorithms. Our code will be made publicly available.
引用
收藏
页数:20
相关论文
共 51 条
[1]  
[Anonymous], 1993, TECHNICAL REPORT
[2]  
Banerjee A, 2007, IEEE IMAGE PROC, P1797
[3]   Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison [J].
Bernabe, Sergio ;
Sanchez, Sergio ;
Plaza, Antonio ;
Lopez, Sebastian ;
Benediktsson, Jon Atli ;
Sarmiento, Roberto .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1386-1398
[4]   An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [J].
Chang, CI .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) :1927-1932
[5]   How to design synthetic images to validate and evaluate hyperspectral imaging algorithms [J].
Chang, Yu-Cherng Channing ;
Ren, Hsuan ;
Chang, Chein-, I ;
Rand, Robert S. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
[6]   Sparse Representation for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :629-640
[7]   Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) :676-680
[8]   Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems [J].
Clark, RN ;
Swayze, GA ;
Livo, KE ;
Kokaly, RF ;
Sutley, SJ ;
Dalton, JB ;
McDougal, RR ;
Gent, CA .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
[9]   False-alarm characterization in hyperspectral gas-detection applications [J].
DiPietro, Robert S. ;
Truslow, Eric ;
Manolakis, Dimitris G. ;
Golowich, Steven E. ;
Lockwood, Ronald B. .
IMAGING SPECTROMETRY XVII, 2012, 8515
[10]   Automated Hyperspectral Cueing for Civilian Search and Rescue [J].
Eismann, Michael T. ;
Stocker, Alan D. ;
Nasrabadi, Nasser M. .
PROCEEDINGS OF THE IEEE, 2009, 97 (06) :1031-1055