Photothermally Targeted Thermosensitive Polymer-Masked Nanoparticles

被引:76
作者
Barhoumi, Aoune [1 ,3 ]
Wang, Weiping [1 ,3 ]
Zurakowsi, David [2 ]
Langer, Robert S. [3 ]
Kohane, Daniel S. [1 ,3 ]
机构
[1] Harvard Univ, Sch Med, Childrens Hosp Boston, Lab Biomat & Drug Delivery, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Childrens Hosp Boston, Dept Anesthesiol,Div Crit Care Med, Boston, MA 02115 USA
[3] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
关键词
Au nanoshells; phototargeting; pNIPAAm; shielding; temperature-responsive; YIGSR; DRUG-DELIVERY; RELEASE;
D O I
10.1021/nl403733z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The targeted delivery of therapeutic cargos using noninvasive stimuli has the potential to improve efficacy and reduce off-target effects (toxicity). Here, we demonstrate a targeting mechanism that uses a thermoresponsive copolymer to mask a peptide ligand that binds a widely distributed receptor (integrin beta(1)) on the surface of silica core-gold shell nanoparticles. The nanoparticles convert NIR light into heat, which causes the copolymer to collapse, exposing the ligand peptide, allowing cell binding. The use of NIR light could allow targeting of plasmonic nanoparticles deep within tissues. This approach could be extended to a variety of applications including photothermal therapy and drug delivery.
引用
收藏
页码:3697 / 3701
页数:5
相关论文
共 28 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]  
[Anonymous], ANGEW CHEM, DOI DOI 10.1002/ANGE.200600214
[3]   Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy [J].
Barhoumi, Aoune ;
Huschka, Ryan ;
Bardhan, Rizia ;
Knight, Mark W. ;
Halas, Naomi J. .
CHEMICAL PHYSICS LETTERS, 2009, 482 (4-6) :171-179
[4]   Silver Nanoscale Antisense Drug Delivery System for Photoactivated Gene Silencing [J].
Brown, Paige K. ;
Qureshi, Ammar T. ;
Moll, Alyson N. ;
Hayes, Daniel J. ;
Monroe, W. Todd .
ACS NANO, 2013, 7 (04) :2948-2959
[5]   Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin [J].
Bulmus, V ;
Ding, ZL ;
Long, CJ ;
Stayton, PS ;
Hoffman, AS .
BIOCONJUGATE CHEMISTRY, 2000, 11 (01) :78-83
[6]   Multiple comparisons procedures [J].
Cabral, Howard J. .
CIRCULATION, 2008, 117 (05) :698-701
[7]   Fluorescence quenching by a metal nanoparticle in the extreme near-field regime [J].
Castanie, E. ;
Boffety, M. ;
Carminati, R. .
OPTICS LETTERS, 2010, 35 (03) :291-293
[8]   Detoxifying Antitumoral Drugs via Nanoconjugation: The Case of Gold Nanoparticles and Cisplatin [J].
Comenge, Joan ;
Sotelo, Carmen ;
Romero, Francisco ;
Gallego, Oscar ;
Barnadas, Agusti ;
Garcia-Caballero Parada, Tomas ;
Dominguez, Fernando ;
Puntes, Victor F. .
PLOS ONE, 2012, 7 (10)
[9]   A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles [J].
Demers, LM ;
Mirkin, CA ;
Mucic, RC ;
Reynolds, RA ;
Letsinger, RL ;
Elghanian, R ;
Viswanadham, G .
ANALYTICAL CHEMISTRY, 2000, 72 (22) :5535-5541
[10]   Gold nanoparticle platforms as drug and biomacromolecule delivery systems [J].
Duncan, Bradley ;
Kim, Chaekyu ;
Rotello, Vincent M. .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (01) :122-127