Supramolecular Nanotube Reactors for Production of Imine Polymers with Controlled Conformation, Size, and Chirality

被引:12
作者
Kameta, Naohiro [1 ]
Ding, Wuxiao [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Dept Mat & Chem, Tsukuba Cent 5, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
关键词
imines; polymers; reactors; self-assembly; supramolecular nanotubes; LIPID NANOTUBES; ASSEMBLIES; FABRICATION; POLYMERIZATION; SCHIZOPHYLLAN; PHOTOPHYSICS; CHEMISTRY; HOST;
D O I
10.1002/smll.201900682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of supramolecular nanotubes with inner diameters of 1, 4, 9, 12, 16, and 29 nm are prepared from amino acid lipids. The hydrophobic channels of the nanotubes act as reactors for the formation of imine polymers by not only effectively encapsulating the benzaldehyde and diacetyleneamine precursors of the imine monomers but also markedly accelerating imine formation. The nanotube inner diameter determines whether the imine monomers self-assemble into nanoparticles, nanotapes, nanocoils, or twisted nanofibers in the channels. UV-induced polymerization of the diacetylene units in the imine nanostructures followed by decomposition of the nanotubes into molecular dispersions of the constituent amino acid lipids results in expulsion of the polymerized imine nanostructures with retained conformation. The isolated nanocoils and twisted nanofibers retain the helicity and circular dichroism induced by the nanotubes, which exhibits supramolecular chirality, even though the components of the imine monomers are achiral. These supramolecular nanotubes with tunable diameters and functionalizable surfaces can be expected to be useful for the production of polymers with controlled conformation, size, and chirality without the need for rational design or chemical modification of the monomers or optimization of the polymerization conditions.
引用
收藏
页数:9
相关论文
共 69 条
  • [1] Adler-Abramovich L, 2014, CHEM SOC REV, V43, P6881, DOI 10.1039/c4cs00164h
  • [2] Functional Supramolecular Polymers
    Aida, T.
    Meijer, E. W.
    Stupp, S. I.
    [J]. SCIENCE, 2012, 335 (6070) : 813 - 817
  • [3] STRUCTURE OF POLYGLYCINE
    BAMFORD, CH
    BROWN, L
    CANT, EM
    ELLIOTT, A
    HANBY, WE
    MALCOLM, BR
    [J]. NATURE, 1955, 176 (4478) : 396 - 397
  • [4] Molecular and supramolecular chemistry of rosette nanotubes
    Beingessner, Rachel L.
    Fan, Yiwen
    Fenniri, Hicham
    [J]. RSC ADVANCES, 2016, 6 (79): : 75820 - 75838
  • [5] INFRARED SPECTRA AND THE STRUCTURE OF GLYCINE AND LEUCINE PEPTIDES
    BLOUT, ER
    LINSLEY, SG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1952, 74 (08) : 1946 - 1951
  • [6] Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold
    Carny, Ohad
    Shalev, Deborah E.
    Gazit, Ehud
    [J]. NANO LETTERS, 2006, 6 (08) : 1594 - 1597
  • [7] Engineering Metal Organic Frameworks for Heterogeneous Catalysis
    Corma, A.
    Garcia, H.
    Llabres i Xamena, F. X. L. I.
    [J]. CHEMICAL REVIEWS, 2010, 110 (08) : 4606 - 4655
  • [8] STRUCTURE OF POLYGLYCINE-II
    CRICK, FHC
    RICH, A
    [J]. NATURE, 1955, 176 (4486) : 780 - 781
  • [9] desla Rica R., 2011, ADV FUNCT MATER, V21, P1018
  • [10] Lipid Nanotube Tailored Fabrication of Uniquely Shaped Polydopamine Nanofibers as Photothermal Converters
    Ding, Wuxiao
    Chechetka, Svetlana A.
    Masuda, Mitsutoshi
    Shimizu, Toshimi
    Aoyagi, Masaru
    Minamikawa, Hiroyuki
    Miyako, Eijiro
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (13) : 4345 - 4350