A comparative study on heterogeneous information network embeddings

被引:2
作者
Ji, Fujiao [1 ]
Zhao, Zhongying [1 ]
Zhou, Hui [1 ]
Chi, Heng [1 ]
Li, Chao [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect & Informat Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
heterogeneous information network; network embedding; network representation learning; social network analysis;
D O I
10.3233/JIFS-191796
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heterogeneous information networks are widely used to represent real world applications in forms of social networks, word co-occurrence networks, and communication networks, etc. However, It is difficult for traditional machine learning methods to analyze these networks effectively. Heterogeneous information network embedding aims to convert the network into low dimensional vectors, which facilitates the following tasks. Thus it is receiving tremendous attention from the research community due to its effectiveness and efficiency. Although numerous methods have been present and applied successfully, there are few works to make a comparative study on heterogeneous information network embedding, which is very important for developers and researchers to select an appropriate method. To address the above problem, we make a comparative study on the heterogeneous information network embeddings. Specifically, we first give the problem definition of heterogeneous information network embedding. Then the heterogeneous information networks are classified into four categories from the perspective of network type. The state-of-the-art methods for each category are also compared and reviewed. Finally, we make a conclusion and suggest some potential future research directions.
引用
收藏
页码:3463 / 3473
页数:11
相关论文
共 50 条
  • [1] [Anonymous], ABS181204202 CORR
  • [2] Bibliographic Network Representation Based Personalized Citation Recommendation
    Cai, Xiaoyan
    Zheng, Yu
    Yang, Libin
    Dai, Tao
    Guo, Lantian
    [J]. IEEE ACCESS, 2019, 7 : 457 - 467
  • [3] Heterogeneous Information Network Embedding with Meta-path Based Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Xu, Ming
    Wang, Chongjun
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 622 - 634
  • [4] Representation Learning for Attributed Multiplex Heterogeneous Network
    Cen, Yukuo
    Zou, Xu
    Zhang, Jianwei
    Yang, Hongxia
    Zhou, Jingren
    Tang, Jie
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1358 - 1368
  • [5] Heterogeneous Network Embedding via Deep Architectures
    Chang, Shiyu
    Han, Wei
    Tang, Jiliang
    Qi, Guo-Jun
    Aggarwal, Charu C.
    Huang, Thomas S.
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 119 - 128
  • [6] Consensus reaching in social network group decision making: Research paradigms and challenges
    Dong, Yucheng
    Zha, Quanbo
    Zhang, Hengjie
    Kou, Gang
    Fujita, Hamido
    Chiclana, Francisco
    Herrera-Viedma, Enrique
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 162 : 3 - 13
  • [7] metapath2vec: Scalable Representation Learning for Heterogeneous Networks
    Dong, Yuxiao
    Chawla, Nitesh V.
    Swami, Ananthram
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 135 - 144
  • [8] HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning
    Fu, Tao-yang
    Lee, Wang-Chien
    Lei, Zhen
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1797 - 1806
  • [9] Graph embedding techniques, applications, and performance: A survey
    Goyal, Palash
    Ferrara, Emilio
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 151 : 78 - 94
  • [10] node2vec: Scalable Feature Learning for Networks
    Grover, Aditya
    Leskovec, Jure
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 855 - 864