Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism

被引:50
作者
Lin, Kevin K. [1 ]
Lu, Fei [2 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Model reduction; Koopman operators; Mori-Zwanzig formalism; Nonlinear time series analysis; System identification; DIMENSION REDUCTION; OPTIMAL PREDICTION; EQUATION; SYSTEMS; PARAMETERIZATION; DYNAMICS;
D O I
10.1016/j.jcp.2020.109864
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Model reduction methods aim to describe complex dynamic phenomena using only relevant dynamical variables, decreasing computational cost, and potentially highlighting key dynamical mechanisms. In the absence of special dynamical features such as scale separation or symmetries, the time evolution of these variables typically exhibits memory effects. Recent work has found a variety of data-driven model reduction methods to be effective for representing such non-Markovian dynamics, but their scope and dynamical underpinning remain incompletely understood. Here, we study data-driven model reduction from a dynamical systems perspective. For both chaotic and randomly-forced systems, we show the problem can be naturally formulated within the framework of Koopman operators and the Mori-Zwanzig projection operator formalism. We give a heuristic derivation of a NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous input) model from an underlying dynamical model. The derivation is based on a simple construction we call Wiener projection, which links Mori-Zwanzig theory to both NARMAX and to classical Wiener filtering. We apply these ideas to the Kuramoto-Sivashinsky model of spatiotemporal chaos and a viscous Burgers equation with stochastic forcing. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 50 条
[31]   Data-Driven Koopman Model Predictive Control for Optimal Operation of High-Speed Trains [J].
Chen, Bin ;
Huang, Zhiwu ;
Zhang, Rui ;
Liu, Weirong ;
Li, Heng ;
Wang, Jing ;
Fan, Yunsheng ;
Peng, Jun .
IEEE ACCESS, 2021, 9 :82233-82248
[32]   Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques [J].
Cisneros, Pablo S. G. ;
Datar, Adwait ;
Goettsch, Patrick ;
Werner, Herbert .
IFAC PAPERSONLINE, 2020, 53 (02) :6062-6068
[33]   Data-Driven Encoding: A New Numerical Method for Computation of the Koopman Operator [J].
Ng, Jerry ;
Asada, H. Harry .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (07) :3940-3947
[34]   A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition [J].
Williams, Matthew O. ;
Kevrekidis, Ioannis G. ;
Rowley, Clarence W. .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) :1307-1346
[35]   Data-Driven Partitioning of Power Networks Via Koopman Mode Analysis [J].
Raak, Fredrik ;
Susuki, Yoshihiko ;
Hikihara, Takashi .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (04) :2799-2808
[36]   Data-Driven Models for Control Engineering Applications Using the Koopman Operator [J].
Junker, Annika ;
Timmermann, Julia ;
Traechtler, Ansgar .
2022 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC, 2022, :1-9
[37]   Data-Driven Koopman Learning and Prediction of Piezoelectric Tube Scanner Hysteresis [J].
Li, Xiuting ;
Zhang, Hai-Tao ;
Huang, Xiang ;
Li, Linlin ;
Zhu, Li-Min ;
Ding, Han ;
Yuan, Ye .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (06) :3631-3641
[38]   Identification of Unstable Linear Systems using Data-driven Koopman Analysis [J].
Ketthong, Patinya ;
Samkunta, Jirayu ;
Nghia Thi Mai ;
Hashikura, Kotaro ;
Kamal, Md Abdus Samad ;
Murakami, Iwanori ;
Yamada, Kou .
2024 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, ECTI-CON 2024, 2024,
[39]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[40]   Adaptive Data-Driven Model Order Reduction for Unsteady Aerodynamics [J].
Nagy, Peter ;
Fossati, Marco .
FLUIDS, 2022, 7 (04)