Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations

被引:63
作者
Khan, Farid [1 ,2 ]
Sassani, Farrokh [1 ]
Stoeber, Boris [1 ,3 ]
机构
[1] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1W5, Canada
[2] Univ Engn & Technol Peshawar, Inst Mechatron Engn, Peshawar, Pakistan
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2014年 / 20卷 / 07期
关键词
Electromagnetic; Energy harvesting; PDMS membrane; Planar copper coil; Nonlinear system; Random vibration; DESIGN;
D O I
10.1007/s00542-013-1938-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the fabrication and characterization of a vibration-based polydimethylsiloxane (PDMS) membrane type electromagnetic energy harvester (EMEH) is reported. The harvester is suitable for generating electric energy from low level sinusoidal and narrow band random vibrations. Under acceleration levels greater than 0.1 g the behaviour of the EMEH is nonlinear, exhibiting sharp jump and hysteresis phenomena during frequency sweeps. Under sinusoidal excitations (0.1-3 g), the device produces a maximum of 88.8 mV load voltage and 39.4 mu W power. At a matching load impedance of 10.1 Omega and when excited at its resonant frequency of 108.4 Hz and 3 g base acceleration, it generates a power of 68.0 mu W, which corresponds to a power density of 30.22 mu W/cm(3). The nonlinear behaviour of the EMEH is exploited to harvest energy under narrow band random excitations. At higher acceleration levels of narrow band (50-150 Hz) random excitations, the device exhibits a broadening of the load voltage spectrum in comparison to the response under relatively low acceleration levels of narrow band (5-150 Hz) random excitations. The results show that the nonlinear behaviour of the PDMS membrane can be utilized to enhance the bandwidth of the harvester under narrow band random excitations and provides a simple alternative to other bandwidth broadening methods such as beam prestress, resonance tuning, or stopper impacts.
引用
收藏
页码:1323 / 1335
页数:13
相关论文
共 33 条
  • [1] A review of power harvesting using piezoelectric materials (2003-2006)
    Anton, Steven R.
    Sodano, Henry A.
    [J]. SMART MATERIALS AND STRUCTURES, 2007, 16 (03) : R1 - R21
  • [2] Review of microscale magnetic power generation
    Arnold, David P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (11) : 3940 - 3951
  • [3] Energy harvesting vibration sources for microsystems applications
    Beeby, S. P.
    Tudor, M. J.
    White, N. M.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) : R175 - R195
  • [4] Nonlinear Energy Harvesting
    Cottone, F.
    Vocca, H.
    Gammaitoni, L.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (08)
  • [5] Dimarogonas AndrewD., 1996, Vibration for engineers
  • [6] Effects of Axial Forces on Cantilever Piezoelectric Resonators for Structural Energy Harvesting
    Elvin, N. G.
    Elvin, A. A.
    [J]. STRAIN, 2011, 47 : 153 - 157
  • [7] Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters
    Ferrari, M.
    Ferrari, V.
    Guizzetti, M.
    Ando, B.
    Baglio, S.
    Trigona, C.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2010, 162 (02) : 425 - 431
  • [8] Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems
    Ferrari, Marco
    Ferrari, Vittorio
    Guizzetti, Michele
    Marioli, Daniele
    Taroni, Andrea
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2008, 142 (01) : 329 - 335
  • [9] Vibration-based energy extraction for sensor powering: Design, analysis, and experimental evaluation
    Gao, RX
    Cui, Y
    [J]. SMART STRUCTURES AND MATERIALS 2005: SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE, PTS 1 AND 2, 2005, 5765 : 794 - 801
  • [10] Fabrication, characterization and modelling of electrostatic micro-generators
    Hoffmann, Daniel
    Folkmer, Bernd
    Manoli, Yiannos
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (09)