Regularity for Energy-Minimizing Area-Preserving Deformations

被引:3
|
作者
Karakhanyan, Aram L. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Incompressible; Area-preserving; Deformations; Monge-Ampere equation; NONLINEAR ELASTICITY; EXISTENCE;
D O I
10.1007/s10659-013-9436-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that emerges in the minimization problem inf(kappa) integral(Omega) vertical bar del v vertical bar(2), mu subset of R-2 as the Lagrange multiplier corresponding to the incompressibility constraint deta double dagger v=1 a.e. in Omega. Our method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain Omega (a <dagger)=u(Omega). This allows to construct a convex function psi, defined in the image domain, such that the measure of the normal mapping of psi controls the L (2) norm of the pressure. As a by-product we conclude that if the dual pressure (introduced in Karakhanyan, Manuscr. Math. 138:463, 2012) is nonnegative.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条