THE PLUS/MINUS SELMER GROUPS FOR SUPERSINGULAR PRIMES

被引:29
作者
Kim, Byoung Du [1 ]
机构
[1] Victoria Univ Wellington, Wellington 6140, New Zealand
关键词
elliptic curves; Iwasawa theory; DIMENSIONAL FORMAL GROUPS; ELLIPTIC-CURVES; IWASAWA THEORY; ABELIAN-VARIETIES; NUMBER-FIELDS; NORM MAPS;
D O I
10.1017/S1446788713000165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that an elliptic curve E over Q has good supersingular reduction at p. We prove that Kobayashi's plus/minus Selmer group of E over a Z(p)-extension has no proper Lambda-submodule of finite index under some suitable conditions, where Lambda is the Iwasawa algebra of the Galois group of the Z(p)-extension. This work is analogous to Greenberg's result in the ordinary reduction case.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 2002, ALGEBRA
[2]   Kummer theory for abelian varieties over local fields [J].
Coates, J ;
Greenberg, R .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :129-174
[3]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[4]   NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS - III [J].
HAZEWINKEL, M .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (02) :305-314
[5]   NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS I - CYCLOTOMIC GAMMA-EXTENSION [J].
HAZEWINKEL, M .
JOURNAL OF ALGEBRA, 1974, 32 (01) :89-108
[6]   Iwasawa theory of elliptic curves at supersingular primes over Zp-extensions of number fields [J].
Iovita, Adrian ;
Pollack, Robert .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 :71-103
[7]  
Kim BD, 2009, ASIAN J MATH, V13, P181
[8]   The parity conjecture for elliptic curves at supersingular reduction primes [J].
Kim, Byoung Du B. D. .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :47-72
[9]   Iwasawa theory for elliptic curves at supersingular primes [J].
Kobayashi, S .
INVENTIONES MATHEMATICAE, 2003, 152 (01) :1-36
[10]   RATIONAL POINTS OF ABELIAN VARIETIES WITH VALUES IN TOWERS OF NUMBER FIELDS [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1972, 18 (3-4) :183-266