Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

被引:69
作者
Du, Ling [1 ,2 ,3 ]
Zhou, Tao [1 ,2 ,3 ]
Zou, Zhenhua [2 ,3 ,4 ]
Zhao, Xiang [5 ]
Huang, Kaicheng [1 ,2 ,3 ]
Wu, Hao [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Minist Civil Affairs, Acad Disaster Reduct & Emergency Management, Beijing 100875, Peoples R China
[3] Minist Educ, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, MOE, Key Lab Environm Change & Nat Disaster, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
来源
FORESTS | 2014年 / 5卷 / 06期
基金
中国国家自然科学基金;
关键词
biomass; forest inventory; remote sensing; forest cover proportion; spatial distribution; ABOVEGROUND BIOMASS; GROWING STOCK; CARBON SEQUESTRATION; LAND-USE; CHALLENGES; IMAGERY; MAPS;
D O I
10.3390/f5061267
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004-2008) and the spatially explicit MODIS Land Cover Type product (MCD12C1) were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05 degrees, similar to 5600 m). Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha(-1) during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.
引用
收藏
页码:1267 / 1283
页数:17
相关论文
共 50 条
  • [41] Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data
    Zhang, Yuzhen
    Liang, Shunlin
    Sun, Guoqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) : 140 - 152
  • [42] Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data
    Naik, Parth
    Dalponte, Michele
    Bruzzone, Lorenzo
    REMOTE SENSING, 2021, 13 (07)
  • [43] Remote sensing-assisted data assimilation and simultaneous inference for forest inventory
    Hou, Zhengyang
    Mehtatalo, Lauri
    McRoberts, Ronald E.
    Stahl, Goran
    Tokola, Timo
    Rana, Parvez
    Siipilehto, Jouni
    Xu, Qing
    REMOTE SENSING OF ENVIRONMENT, 2019, 234
  • [44] The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
    Schepaschenko, Dmitry
    Chave, Jerome
    Phillips, Oliver L.
    Lewis, Simon L.
    Davies, Stuart J.
    Rejou-Mechain, Maxime
    Sist, Plinio
    Scipal, Klaus
    Perger, Christoph
    Herault, Bruno
    Labriere, Nicolas
    Hofhansl, Florian
    Affum-Baffoe, Kofi
    Aleinikov, Alexei
    Alonso, Alfonso
    Amani, Christian
    Araujo-Murakami, Alejandro
    Armston, John
    Arroyo, Luzmila
    Ascarrunz, Nataly
    Azevedo, Celso
    Baker, Timothy
    Balazy, Radomir
    Bedeau, Caroline
    Berry, Nicholas
    Bilous, Andrii M.
    Bilous, Svitlana Yu.
    Bissiengou, Pulcherie
    Blanc, Lilian
    Bobkova, Kapitolina S.
    Braslavskaya, Tatyana
    Brienen, Roel
    Burslem, David F. R. P.
    Condit, Richard
    Cuni-Sanchez, Aida
    Danilina, Dilshad
    del Castillo Torres, Dennis
    Derroire, Geraldine
    Descroix, Laurent
    Sotta, Eleneide Doff
    d'Oliveira, Marcus V. N.
    Dresel, Christopher
    Erwin, Terry
    Evdokimenko, Mikhail D.
    Falck, Jan
    Feldpausch, Ted R.
    Foli, Ernest G.
    Foster, Robin
    Fritz, Steffen
    Damian Garcia-Abril, Antonio
    SCIENTIFIC DATA, 2019, 6 (1)
  • [45] Mapping Forest Species in the Central Middle Atlas of Morocco (Azrou Forest) through Remote Sensing Techniques
    Mohajane, Meriame
    Essahlaoui, Ali
    Oudija, Fatiha
    El Hafyani, Mohammed
    Teodoro, Claudia
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (09)
  • [46] PAST, PRESENT AND FUTURE OF APPLICATION OF REMOTE SENSING METHODS IN CROATIAN FOREST INVENTORY
    Benko, Miroslav
    Balenovic, Ivan
    SUMARSKI LIST, 2011, 135 : 272 - 281
  • [47] Nexus of certain model-based estimators in remote sensing forest inventory
    Zheng, Yan
    Hou, Zhengyang
    Stahl, Goran
    McRoberts, Ronald E.
    Zeng, Weisheng
    Naesset, Erik
    Gobakken, Terje
    Li, Bo
    Xu, Qing
    FOREST ECOSYSTEMS, 2024, 11
  • [48] Evaluating the Remote Sensing and Inventory-Based Estimation of Biomass in the Western Carpathians
    Main-Knorn, Magdalena
    Moisen, Gretchen G.
    Healey, Sean P.
    Keeton, William S.
    Freeman, Elizabeth A.
    Hostert, Patrick
    REMOTE SENSING, 2011, 3 (07) : 1427 - 1446
  • [49] Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features
    Tamm, Tanel
    Remm, Kalle
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (04): : 290 - 297
  • [50] Mapping Global Bamboo Forest Distribution Using Multisource Remote Sensing Data
    Du, Huaqiang
    Mao, Fangjie
    Li, Xuejian
    Zhou, Guomo
    Xu, Xiaojun
    Han, Ning
    Sun, Shaobo
    Gao, Guolong
    Cui, Lu
    Li, Yangguang
    Zhu, Dien
    Liu, Yuli
    Chen, Liang
    Fan, Weiliang
    Li, Pingheng
    Shi, Yongjun
    Zhou, Yufeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1458 - 1471