Walsh-Lebesgue points of multi-dimensional functions

被引:4
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
关键词
D O I
10.1007/s10476-008-0404-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Walsh-Lebesgue points are introduced for higher dimensions and it is proved that a. e. point is a Walsh-Lebesgue point of a function f from the Hardy space H-1(i)[0,1)(d), where H-1(i)[0, 1)(d) superset of L(log L)(d-1)[0,1)(d) for all i = 1,..., d. Every function f epsilon H-1(i)[0, 1)(d) is Fejer summable at each Walsh-Lebesgue point. Similar theorem is verified for theta-summability.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 26 条
[21]   Cesaro summability of two-parameter Walsh-Fourier series [J].
Weisz, F .
JOURNAL OF APPROXIMATION THEORY, 1997, 88 (02) :168-192
[22]  
WEISZ F., 1989, ANN U SCI BUDAP, V32, P243
[23]  
WEISZ F, 2006, E J APPROX, V6, P129
[24]  
Weisz F., 2002, Summability of Multi-Dimensional Fourier Series and Hardy Space
[25]  
Weisz F., 1994, Martingale Hardy spaces and their applications in Fourier analysis
[26]  
Zygmund A., 1959, TRIGONOMETRIC SERIES