Walsh-Lebesgue points of multi-dimensional functions

被引:4
作者
Weisz, Ferenc [1 ]
机构
[1] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
关键词
D O I
10.1007/s10476-008-0404-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Walsh-Lebesgue points are introduced for higher dimensions and it is proved that a. e. point is a Walsh-Lebesgue point of a function f from the Hardy space H-1(i)[0,1)(d), where H-1(i)[0, 1)(d) superset of L(log L)(d-1)[0,1)(d) for all i = 1,..., d. Every function f epsilon H-1(i)[0, 1)(d) is Fejer summable at each Walsh-Lebesgue point. Similar theorem is verified for theta-summability.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 26 条
[1]  
Butzer Paul L., 1971, Fourier Analysis and Approximation: One Dimensional Theory
[2]  
BUTZER PL, 1973, APPL ANAL, V3, P29, DOI [DOI 10.1080/00036817308839055, 10.1080/00036817308839055]
[3]   DIVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (02) :191-+
[4]   CONVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) :744-+
[5]   Wiener amalgams and pointwise summability of Fourier transforms and Fourier series [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :509-536
[6]  
Fejér L, 1904, MATH ANN, V58, P51
[8]   On the divergence of the (C, 1) means of double Walsh-Fourier series [J].
Gát, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) :1711-1720
[9]  
GAT G, 2001, ANAL MATH, V27, P157
[10]   Research on the convergence of the Fourier sequences [J].
Lebesgul, H .
MATHEMATISCHE ANNALEN, 1905, 61 :0251-0280