Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin-Huxley neuronal network

被引:38
作者
Borges, R. R. [1 ,2 ]
Borges, F. S. [1 ]
Lameu, E. L. [1 ]
Batista, A. M. [1 ,3 ,4 ]
Iarosz, K. C. [4 ]
Caldas, I. L. [4 ]
Viana, R. L. [5 ]
Sanjuan, M. A. F. [6 ]
机构
[1] Univ Estadual Ponta Grossa, Posgrad Ciencias, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Tecnol Fed Parana, Dept Matemat, BR-86812460 Apucarana, PR, Brazil
[3] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
[4] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil
[5] Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, PR, Brazil
[6] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2016年 / 34卷
基金
巴西圣保罗研究基金会;
关键词
Plasticity; Neuronal network; Synchronisation; CORRELATED ACTIVITY; MODEL; POTENTIATION; AREA;
D O I
10.1016/j.cnsns.2015.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the effects of spike timing-dependent plasticity on synchronisation in a network of Hodgkin-Huxley neurons. Neuron plasticity is a flexible property of a neuron and its network to change temporarily or permanently their biochemical, physiological, and morphological characteristics, in order to adapt to the environment. Regarding the plasticity, we consider Hebbian rules, specifically for spike timing dependent plasticity (STOP), and with regard to network, we consider that the connections are randomly distributed. We analyse the synchronisation and desynchronisation according to an input level and probability of connections. Moreover, we verify that the transition for synchronisation depends on the neuronal network architecture, and the external perturbation level. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 49 条
[1]   Compensating for thalamocortical synaptic loss in Alzheimer's disease [J].
Abuhassan, Kamal ;
Coyle, Damien ;
Maguire, Liam .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2014, 8
[2]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[3]  
[Anonymous], 1961, Brain mechanisms and learning, DOI DOI 10.5962/BHL.TITLE.7220
[4]  
[Anonymous], 1984, Chemical Oscillations, Waves, and Turbulence
[5]  
[Anonymous], 2002, SPIKING NEURON MODEL
[6]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[7]   Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons [J].
Bayati, M. ;
Valizadeh, A. .
PHYSICAL REVIEW E, 2012, 86 (01)
[8]  
Bear M. F., 2016, Neuroscience: Exploring the Brain
[9]   Synaptic modification by correlated activity: Hebb's postulate revisited [J].
Bi, GQ ;
Poo, MM .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :139-166
[10]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472