Multiobjective Optimization of Design of 4H-SiC Power MOSFETs for Specific Applications

被引:31
作者
Bencherif, H. [1 ,2 ]
Dehimi, L. [1 ]
Pezzimenti, F. [3 ]
De Martino, G. [3 ]
Della Corte, F. G. [3 ]
机构
[1] Univ Biskra, Lab Metall & Semicond Mat, Biskra, Algeria
[2] Univ Mostefa Benboulaid, Dept Elect, LAAAS, Batna 2, Algeria
[3] Mediterranea Univ Reggio Calabria, DIIES, Reggio Di Calabria, Italy
关键词
4H-SiC MOSFET; power device; design optimization; ON-state resistance; blocking voltage; GENETIC ALGORITHMS; SIC DEVICES; 4H; PERFORMANCE; RECOMBINATION; IONIZATION; SIMULATION; 6H; 3C;
D O I
10.1007/s11664-019-07142-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electrical characteristics of a 4H silicon carbide (4H-SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) have been investigated by using a multiobjective genetic algorithm (MOGA) to overcome the existing tradeoff between main device figures of merit such as the breakdown voltage, drain current, and ON-state resistance. The aim of this work is to achieve an optimized device for a specific application. In particular, without loss of generality, we refer to a dual-implanted MOSFET (DMOSFET) dimensioned for use as a low-power transistor in direct current (DC)-DC converters for solar power optimizers. Typical blocking voltages for these transistors are around 150V. In this investigation, both analytical and numerical models are used as objective functions in MOGA to determine a set of optimized physical and geometrical device parameters that meet the application constraints while minimizing the ON-state resistance (R-ON). The optimized DMOSFET exhibits an R-ON value of a few hundred kxm(2) for different breakdown voltages in the range from 150V to 800V.
引用
收藏
页码:3871 / 3880
页数:10
相关论文
共 57 条
  • [1] [Anonymous], 2017, RECENT ADV EVOLUTION
  • [2] [Anonymous], 2016, Atlas Users Manual
  • [3] Modeling of lattice site-dependent incomplete ionization in a-SiC devices
    Ayalew, T
    Grasser, T
    Kosina, H
    Selberherr, S
    [J]. SILICON CARBIDE AND RELATED MATERIALS 2004, 2005, 483 : 845 - 848
  • [4] BAKOWSKI M, 1921, STATUS SOLIDI A, V162, P421, DOI DOI 10.1002/1521-396X(199707)162:1
  • [5] Baliga B. J., 2010, Fundamentals of Power Semiconductor DevicesJ
  • [6] Baliga BJ, 2005, SILICON RF POWER MOSFETS, P1, DOI 10.1142/9789812569325
  • [7] Optimization of SiC UMOSFET Structure for Improvement of Breakdown Voltage and ON-Resistance
    Bharti, Deepshikha
    Islam, Aminul
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (02) : 615 - 621
  • [8] Bolotnikov A, 2012, PROC INT SYMP POWER, P389, DOI 10.1109/ISPSD.2012.6229103
  • [9] Performance Analysis of a Pt/n-GaN Schottky Barrier UV Detector
    Bouzid, F.
    Dehimi, L.
    Pezzimenti, F.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (11) : 6563 - 6570
  • [10] Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode
    Bouzid, Faycal
    Pezzimenti, Fortunato
    Dehimi, Lakhdar
    Megherbi, Mohamed L.
    Della Corte, Francesco G.
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (09)