Optoelectronic Modulation of Undoped NiOx Films for Inverted Perovskite Solar Cells via Intrinsic Defect Regulation

被引:23
作者
Feng, Menglei [1 ]
Wang, Ming [2 ]
Zhou, Hongpeng [1 ]
Li, Wei [2 ]
Xie, Xiuhua [3 ]
Wang, Shuangpeng [4 ]
Zang, Zhigang [2 ]
Chen, Shijian [1 ]
机构
[1] Chongqing Univ, Coll Phys, Chongqing 401331, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[3] Chinese Acad Sci, State Key Lab Luminescence & Applicat, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[4] Univ Macau, Inst Appl Phys & Mat Engn, Taipa 999078, Macau Sar, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; NiO2 hole transport layer; oxygen partial pressure; postannealing treatment; HOLE TRANSPORT LAYER; NICKEL-OXIDE; HIGHLY EFFICIENT; PHOTOVOLTAIC PERFORMANCE; HALIDE PEROVSKITES; ROOM-TEMPERATURE; THIN; INTERFACE; CRYSTALLIZATION; CONDUCTIVITY;
D O I
10.1021/acsaem.0c01330
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni vacancy (V-Ni) as an intrinsic defect plays an important role in the optical and electronic properties of NiOx films for inverted planar perovskite solar cell (PSC) applications. This work presents a facile method to fabricate highly dense and continuous NiOx films with excellent optical transmittance and electronic conductivity by pulsed laser deposition. By simply adjusting the preparation parameters, including oxygen partial pressure, postannealing temperature, and duration time, the well-regulated V-Ni defects contribute to the modified conductivity and optical transmittance of the NiOx films. The conductivity and optical transmittance of NiOx films are all dramatically enhanced with the increasing oxygen partial pressure. Specifically, the valence band level of NiOx is adjusted by the V-Ni defect densities to better match or align with that of the perovskite layer for faster hole extraction with lower energy losses. Density functional theory calculation displays that the Fermi energy level is shifted to a lower energy level due to the enhanced hole carrier concentration generated from the increased V-Ni. Benefiting from the excellent optical transmittance, electronic conductivity, and well-matched energy alignment, the inverted PSC with NiOx hole transport layer (HTL) exhibits the highest power conversion efficiency of 16.85% with high open-circuit voltage (1.14 V), short-circuit current density (20.49 mA/cm(2)), fill factor (0.72), and negligible current-voltage hysteresis effect. This work reveals that modulating the intrinsic defects of NiOx HTLs is an efficient way to achieve high performance of NiOx-based inverted PSCs.
引用
收藏
页码:9732 / 9741
页数:10
相关论文
共 70 条
[1]   Electron-Beam-Evaporated Nickel Oxide Hole Transport Layers for Perovskite-Based Photovoltaics [J].
Abzieher, Tobias ;
Moghadamzadeh, Somayeh ;
Schackmar, Fabian ;
Eggers, Helge ;
Sutterlueti, Florian ;
Farooq, Amjad ;
Kojda, Danny ;
Habicht, Klaus ;
Schmager, Raphael ;
Mertens, Adrian ;
Azmi, Raheleh ;
Klohr, Lukas ;
Schwenzer, Jonas A. ;
Hetterich, Michael ;
Lemmer, Uli ;
Richards, Bryce S. ;
Powalla, Michael ;
Paetzold, Ulrich W. .
ADVANCED ENERGY MATERIALS, 2019, 9 (12)
[2]   Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies [J].
Anspoks, A. ;
Kalinko, A. ;
Kalendarev, R. ;
Kuzmin, A. .
PHYSICAL REVIEW B, 2012, 86 (17)
[3]   Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p-i-n Perovskite Solar Cells [J].
Aydin, Erkan ;
Troughton, Joel ;
De Bastiani, Michele ;
Ugur, Esma ;
Sajjad, Muhammad ;
Alzahrani, Areej ;
Neophytou, Marios ;
Schwingenschlogl, Udo ;
Laquai, Frederic ;
Baran, Derya ;
De Wolf, Stefaan .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (11) :6227-6233
[4]   Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance [J].
Bai, Yang ;
Chen, Haining ;
Xiao, Shuang ;
Xue, Qifan ;
Zhang, Teng ;
Zhu, Zonglong ;
Li, Qiang ;
Hu, Chen ;
Yang, Yun ;
Hu, Zhicheng ;
Huang, Fei ;
Wong, Kam Sing ;
Yip, Hin-Lap ;
Yang, Shihe .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2950-2958
[5]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[6]   Characterization of sputtered NiO thin films [J].
Chen, HL ;
Lu, YM ;
Hwang, WS .
SURFACE & COATINGS TECHNOLOGY, 2005, 198 (1-3) :138-142
[7]   Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells [J].
Chen, Wei ;
Zhou, Yecheng ;
Chen, Guocong ;
Wu, Yinghui ;
Tu, Bao ;
Liu, Fang-Zhou ;
Huang, Li ;
Ng, Alan Man Ching ;
Djurisic, Aleksandra B. ;
He, Zhubing .
ADVANCED ENERGY MATERIALS, 2019, 9 (19)
[8]   Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells [J].
Chen, Wei ;
Wu, Yinghui ;
Fan, Jing ;
Djurisic, Aleksandra B. ;
Liu, Fangzhou ;
Tam, Ho Won ;
Ng, Annie ;
Surya, Charles ;
Chan, Wai Kin ;
Wang, Dong ;
He, Zhu-Bing .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[9]   Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells [J].
Chen, Wei ;
Liu, Fang-Zhou ;
Feng, Xi-Yuan ;
Djurisic, Aleksandra B. ;
Chan, Wai Kin ;
He, Zhu-Bing .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[10]   Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells [J].
Cheng, Yuanhang ;
Li, Menglin ;
Liu, Xixia ;
Cheung, Sin Hang ;
Chandran, Hrisheekesh Thachoth ;
Li, Ho-Wa ;
Xu, Xiuwen ;
Xie, Yue-Min ;
So, Shu Kong ;
Yip, Hin-Lap ;
Tsang, Sai-Wing .
NANO ENERGY, 2019, 61 :496-504